• Title/Summary/Keyword: Wnt/${\beta}$-catenin pathway

Search Result 93, Processing Time 0.028 seconds

The Effect of Carex dispalata Extract on the Activation of Anagen Pathway (삿갓사초 추출물의 모발 성장 기전 활성화 효과)

  • Kang, Jung-Il;Seo, Min Jeong;Choi, Youn Kyung;Shin, Su Young;Kim, Sun Yu;Yoo, Eun-Sook;Kim, Sang-Cheol;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.234-241
    • /
    • 2021
  • Dermal papilla cells (DPCs) are present throughout the hair cycle and play an essential role in hair cycle and hair growth. In this study, we investigated the effect of Carex dispalata on the activation of anagen pathway in DPCs. C. dispalata extract increased the proliferation of DPCs and induced changes in the levels of cell cycle-related proteins. To elucidate the mechanism by which C. dispalata extract stimulates the anagen pathway related to the proliferation of DPCs, we evaluated the effect of C. dispalata extract on the activation of Akt signaling. The increase in the level of phospho-Akt by C. dispalata extract was inhibited by PI3K inhibitor (wortmannin). Wortmannin reduced the effects of C. dispalata extract on the levels of cell cycle-related proteins and proliferation of DPCs. C. dispalata extract increased the levels of Wnt/β-catenin proteins. Wnt/β-catenin inhibitor (XAV939) inhibited changes in cell cycle, cell cycle-related proteins, Wnt/β-catenin proteins, and proliferation induced by C. dispalata extract. C. dispalata extract increased the level of autophagy protein (LC3I/II), and this change was inhibited by XAV939. These results suggest that C. dispalata extract can activate PI3K/Akt, Wnt/β-catenin, and autophagy pathways in DPCs to induce cell proliferation, and thereby promote hair growth phase.

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim;Kwang Wook Min;You-Joung Kim;Ron Smits;Konrad Basler;Jin Woo Kim
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.441-450
    • /
    • 2023
  • β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway

  • Lee, Yun Hee;Choi, Hui-Ji;Kim, Ji Yea;Kim, Ji-Eun;Lee, Jee-Hyun;Cho, So-Hyun;Yun, Mi-Young;An, Sungkwan;Song, Gyu Yong;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.933-941
    • /
    • 2021
  • Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 ㎍/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3β, which activates the WNT/β-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of β-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/β-catenin pathway including WNT5A, β-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3β/β-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.

Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells

  • Cheon, Hye In;Bae, Seunghee;Ahn, Kyu Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.321-329
    • /
    • 2019
  • Hair loss, also known as alopecia, is a common dermatological condition of psychosocial significance; development of therapeutic candidates for the treatment of this condition is, hence, important. Silibinin, a secondary metabolite from Silybum marianum, is an effective antioxidant that also prevents various cutaneous problems. In this study, we have investigated the effect of silibinin on hair induction using three-dimensional (3D) cultured, human dermal papilla (DP) spheroids. Silibinin was found to significantly increase viability through AKT serine/threonine kinase (AKT) activation in 3D DP spheroids. This was correlated with an increase in the diameter of the 3D DP spheroids. The activation of the wingless and INT-1 (Wnt)/${\beta}$-catenin signaling pathway, which is associated with hair growth induction in the DP, was evaluated using the T cell-specific transcription factor and lymphoid enhancer-binding factor (TCF/LEF) transcription factor reporter assay; results indicated significantly increased luciferase activity. In addition, we were able to demonstrate increased expression of the target genes, WNT5a and LEF1, using quantitative real-time PCR assay. Lastly, significantly elevated expression of signature genes associated with hair induction was demonstrated in the 3D DP spheroids treated with silibinin. These results suggest that silibinin promotes proliferation and hair induction through the AKT and Wnt/${\beta}$-catenin signaling pathways in 3D DP spheroids. Silibinin can be a potential candidate to promote hair proliferation.

Proliferative Activity of Polyporus umbellatus Extract from Mushrooms via the PI3K/Akt and Wnt/β-catenine signaling in HHDPCs (사람 모유두세포에서 PI3K/Akt와 Wnt/β-catenine 신호전달을 경유한 저령추출물의 세포증식 효과)

  • Lea-Minju Kang;Suk-Jong Kang;Yeun-Ja Mun
    • The Korea Journal of Herbology
    • /
    • v.39 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • Objectives : Polyporus umbellatus is a medicinal mushroom that has been used for over thousands years in Chinese medicine as a powerful diuretic to relieve fluid retention and edema. Dermal papilla is located at the bottom of the hair follicle and connected to the blood vessels where it gets the nutrients and oxygen to nurture hair follicle. This study examined the mechanism through which the ethanol extract of Polyporus umbellatus (EPU) promoted the proliferation of human dermal papilla cells (HHDPCs). Methods : To estimate the proliferative effects of EPU on HHDPCs, cell viability was estimated by thiazolyl blue tetrazolium bromide (MTT) assay. Western blotting was used to investgate the activation of ERK, phosphoinositide 3-kinase (PI3K)/Akt, β-catenin, GSK-3β and heme oxygenase-1 (HO-1). Cells were treated with inhibitors of ERK and Akt prior to EPU treatment. Results : EPU promoted the proliferation of HHDPCs and the phosphorylation of ERK and Akt in dose dependent manner. However, the proliferative effect of EPU on HHDPCs was inhibited by pre-treatment of ERK inhibitor (PD98059) and Akt inhibitor (LY294002). Furthermore, EPU respectively stimulated the protein expression of β-catenin and phosphorylated GSK-3β. EPU significantly increased the protein expression levels of proliferation and cytoprotection related genes such as Bcl-2, SIRT-1, and HO-1 in cells. Conclusion : This results suggest that EPU promoted the proliferation of HHDPCs via activating PI3K/Akt and Wnt/β-catenin signaling pathway in HHDPCs.

The Improvement of skin barrier function and anti-obesity effect of Codonopsis lanceolata by supercritical carbon dioxide extraction

  • Kim, Bora
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.674-681
    • /
    • 2020
  • The root of Codonopsis lanceolata has been used in traditional medicine. This study was conducted to confirm the comparative effect of ethanol solvent extraction (CLE) and supercritical carbon dioxide extraction (CLS) of C. lanceolata roots. CLS had higher antioxidant than CLE. For supercritical co-solvent modified carbon dioxide extraction (CLS), it were extracted at 250 bar 50℃ 150 min at a flow rate of ethyl alcohol 3 mL/min for 90min. In addition, CLS inhibited the adipocyte differentiation of 3T3-L1 cells. When treated with the extract at a concentration of 100 ㎍/mL, the Wnt/β-catenin pathway reporter luciferase activity of HEK 293-TOP cells increased approximately by 3-folds compared to that of the untreated control group. Also, the treatment by CLS (50 ㎍/mL) showed a significant increase of involucrin expression. These results indicate that supercritical carbon dioxide extract of C. lanceolatamay serve as a cosmeceutical agent for improving skin barrier function and the treatment of obesity.

MicroRNA-766-3p Inhibits Tumour Progression by Targeting Wnt3a in Hepatocellular Carcinoma

  • You, Yu;Que, Keting;Zhou, Yun;Zhang, Zhen;Zhao, Xiaoping;Gong, Jianpin;Liu, Zuojin
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.830-841
    • /
    • 2018
  • Recent studies have indicated that microRNAs (miRNAs) play an important role in hepatocellular carcinoma (HCC) progression. In this study, we showed that miR-766-3p was decreased in approximately 72% of HCC tissues and cell lines, and its low expression level was significantly correlated with tumour size, TNM stage, metastasis, and poor prognosis in HCC. Ectopic miR-766-3p expression inhibited HCC cell proliferation, colony formation, migration and invasion. In addition, we showed that miR-766-3p repressed Wnt3a expression. A luciferase reporter assay revealed that Wnt3a was a direct target of miR-766-3p, and an inverse correlation between miR-766-3p and Wnt3a expression was observed. Moreover, Wnt3a up-regulation reversed the effects of miR766-3p on HCC progression. In addition, our study showed that miR-766-3p up-regulation decreased the nuclear ${\beta}-catenin$ level and expression of Wnt targets (TCF1 and Survivin) and reduced the level of MAP protein regulator of cytokinesis 1 (PRC1). However, these effects of miR-766-3p were reversed by Wnt3a up-regulation. In addition, PRC1 upregulation increased the nuclear ${\beta}-catenin$ level and protein expression of TCF1 and Survivin. iCRT3, which disrupts the ${\beta}-catenin-TCF4$ interaction, repressed the TCF1, Survivin and PRC1 protein levels. Taken together, our results suggest that miR-766-3p down-regulation promotes HCC cell progression, probably by targeting the Wnt3a/PRC1 pathway, and miR-766-3p may serve as a potential therapeutic target in HCC.

Clinical Significance of Axin and β-catenin Protein Expression in Primary Hepatocellular Carcinomas

  • Guan, Cheng-Nong;Chen, Xin-Ming;Lou, Hai-Qing;Liao, Xiang-Hui;Chen, Bao-Ying;Zhang, Pei-Weng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.677-681
    • /
    • 2012
  • The aim of the present research was to investigate clinicopathologic correlations of immunohistochemically-demonstrated axin (axis inhibition) and ${\beta}$-catenin expression in primary hepatocellular carcinomas (HCCs), in comparison with paraneoplastic, cirrhotic and normal liver tissues. Variation in Axin expression across groups were significant (P < 0.01), correlating with alpha fetoprotein (AFP), HBsAg, cancer plugs in the portal vein, and clinical stage of HCCs(P < 0.05); however, there were no links with sex, age, and tumour size (P > 0.05). Differences in cell membrane ${\beta}$-catenin expression were also statistically significant (P < 0.01), again correlated with AFP, HBsAg, cancer plugs in the portal vein, and clinical stage in HCCs (P < 0.05) but not with sex, age, and tumour size (P > 0.05). Axin expression levels in tissues with reduced membrane ${\beta}$-catenin were low (P < 0.05), also being low with nuclear ${\beta}$-catenin expression (P < 0.05). Axin and ${\beta}$-catenin may play an important role in the genesis and progression of HCC via the Wnt signal transmission pathway. Simultaneous determination of axin, ${\beta}$-catenin, AFP, and HBsAg may be useful for early diagnosis, and metastatic and clinical staging of HCCs.

Vanillic Acid Stimulates Anagen Signaling via the PI3K/Akt/β-Catenin Pathway in Dermal Papilla Cells

  • Kang, Jung-Il;Choi, Youn Kyung;Koh, Young-Sang;Hyun, Jin-Won;Kang, Ji-Hoon;Lee, Kwang Sik;Lee, Chun Mong;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.354-360
    • /
    • 2020
  • The hair cycle (anagen, catagen, and telogen) is regulated by the interaction between mesenchymal cells and epithelial cells in the hair follicles. The proliferation of dermal papilla cells (DPCs), mesenchymal-derived fibroblasts, has emerged as a target for the regulation of the hair cycle. Here, we show that vanillic acid, a phenolic acid from wheat bran, promotes the proliferation of DPCs via a PI3K/Akt/Wnt/β-catenin dependent mechanism. Vanillic acid promoted the proliferation of DPCs, accompanied by increased levels of cell-cycle proteins cyclin D1, CDK6, and Cdc2 p34. Vanillic acid also increased the levels of phospho(ser473)-Akt, phospho(ser780)-pRB, and phospho(thr37/46)-4EBP1 in a time-dependent manner. Wortmannin, an inhibitor of the PI3K/Akt pathway, attenuated the vanillic acid-mediated proliferation of DPCs. Vanillic acid-induced progression of the cell-cycle was also suppressed by wortmannin. Moreover, vanillic acid increased the levels of Wnt/β-catenin proteins, such as phospho(ser9)-glycogen synthase kinase-3β, phospho(ser552)-β-catenin, and phospho(ser675)-β-catenin. We found that vanillic acid increased the levels of cyclin D1 and Cox-2, which are target genes of β-catenin, and these changes were inhibited by wortmannin. To investigate whether vanillic acid affects the downregulation of β-catenin by dihydrotestosterone (DHT), implicated in the development of androgenetic alopecia, DPCs were stimulated with DHT in the presence and absence of vanillic acid for 24 h. Western blotting and confocal microscopy analyses showed that the decreased level of β-catenin after the incubation with DHT was reversed by vanillic acid. These results suggest that vanillic acid could stimulate anagen and alleviate hair loss by activating the PI3K/Akt and Wnt/β-catenin pathways in DPCs.

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells

  • Choi, Youn Kyung;Kang, Jung-Il;Hyun, Jin Won;Koh, Young Sang;Kang, Ji-Hoon;Hyun, Chang-Gu;Yoon, Kyung-Sup;Lee, Kwang Sik;Lee, Chun Mong;Kim, Tae Yang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.211-219
    • /
    • 2021
  • Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.