DOI QR코드

DOI QR Code

Vanillic Acid Stimulates Anagen Signaling via the PI3K/Akt/β-Catenin Pathway in Dermal Papilla Cells

  • Kang, Jung-Il (Department of Medicine, School of Medicine, Jeju National University) ;
  • Choi, Youn Kyung (Department of Medicine, School of Medicine, Jeju National University) ;
  • Koh, Young-Sang (Department of Medicine, School of Medicine, Jeju National University) ;
  • Hyun, Jin-Won (Department of Medicine, School of Medicine, Jeju National University) ;
  • Kang, Ji-Hoon (Department of Medicine, School of Medicine, Jeju National University) ;
  • Lee, Kwang Sik (Songpa R&D Center, Coreana Cosmetic Co., Ltd) ;
  • Lee, Chun Mong (Songpa R&D Center, Coreana Cosmetic Co., Ltd) ;
  • Yoo, Eun-Sook (Department of Medicine, School of Medicine, Jeju National University) ;
  • Kang, Hee-Kyoung (Department of Medicine, School of Medicine, Jeju National University)
  • Received : 2019.12.04
  • Accepted : 2020.03.23
  • Published : 2020.07.01

Abstract

The hair cycle (anagen, catagen, and telogen) is regulated by the interaction between mesenchymal cells and epithelial cells in the hair follicles. The proliferation of dermal papilla cells (DPCs), mesenchymal-derived fibroblasts, has emerged as a target for the regulation of the hair cycle. Here, we show that vanillic acid, a phenolic acid from wheat bran, promotes the proliferation of DPCs via a PI3K/Akt/Wnt/β-catenin dependent mechanism. Vanillic acid promoted the proliferation of DPCs, accompanied by increased levels of cell-cycle proteins cyclin D1, CDK6, and Cdc2 p34. Vanillic acid also increased the levels of phospho(ser473)-Akt, phospho(ser780)-pRB, and phospho(thr37/46)-4EBP1 in a time-dependent manner. Wortmannin, an inhibitor of the PI3K/Akt pathway, attenuated the vanillic acid-mediated proliferation of DPCs. Vanillic acid-induced progression of the cell-cycle was also suppressed by wortmannin. Moreover, vanillic acid increased the levels of Wnt/β-catenin proteins, such as phospho(ser9)-glycogen synthase kinase-3β, phospho(ser552)-β-catenin, and phospho(ser675)-β-catenin. We found that vanillic acid increased the levels of cyclin D1 and Cox-2, which are target genes of β-catenin, and these changes were inhibited by wortmannin. To investigate whether vanillic acid affects the downregulation of β-catenin by dihydrotestosterone (DHT), implicated in the development of androgenetic alopecia, DPCs were stimulated with DHT in the presence and absence of vanillic acid for 24 h. Western blotting and confocal microscopy analyses showed that the decreased level of β-catenin after the incubation with DHT was reversed by vanillic acid. These results suggest that vanillic acid could stimulate anagen and alleviate hair loss by activating the PI3K/Akt and Wnt/β-catenin pathways in DPCs.

Keywords

References

  1. Amin, F. U., Shah, S. A. and Kim, M. O. (2017) Vanillic acid attenuates $A\beta$ 1-42-induced oxidative stress and cognitive impairment in mice. Sci. Rep. 7, 40753. https://doi.org/10.1038/srep40753
  2. Cotsarelis, G. and Millar, S. E. (2001) Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med. 7, 293-301. https://doi.org/10.1016/S1471-4914(01)02027-5
  3. Elliott, K., Messenger, A. G. and Stephenson, T. J. (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J. Invest. Dermatol. 113, 873-877. https://doi.org/10.1046/j.1523-1747.1999.00797.x
  4. Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. and Sugimoto, C. (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983. https://doi.org/10.1038/sj.onc.1207115
  5. Greco, V., Chen, T., Rendl, M., Schober, M., Pasolli, H. A., Stokes, N., Dela Cruz-Racelis, J. and Fuchs, E. (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155-169. https://doi.org/10.1016/j.stem.2008.12.009
  6. Guo, L., Degenstein, L. and Fuchs, E. (1996) Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. 10, 165-175. https://doi.org/10.1101/gad.10.2.165
  7. Han, J. H., Kwon, O. S., Chung, J. H., Cho, K. H., Eun, H. C. and Kim, K. H. (2004) Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J. Dermatol. Sci. 34, 91-98. https://doi.org/10.1016/j.jdermsci.2004.01.002
  8. Hedgepeth, C. M., Conrad, L. J., Zhang, J., Huang, H. C., Lee, V. M. and Klein, P. S. (1997) Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185, 82-91. https://doi.org/10.1006/dbio.1997.8552
  9. Hino, S., Tanji, C., Nakayama, K. I. and Kikuchi, A. (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol. Cell. Biol. 25, 9063-9072. https://doi.org/10.1128/MCB.25.20.9063-9072.2005
  10. Hong, J. Y., Boo, H. J., Kang, J. I., Kim, M. K., Yoo, E. S., Hyun, J. W., Koh, Y. S., Kim, G. Y., Maeng, Y. H., Hyun, C. L., Chang, W. Y., Kim, Y. H., Kim, Y. R. and Kang, H. K. (2012) (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-olide, a cembrenolide diterpene from soft coral Lobophytum sp., inhibits growth and induces apoptosis in human colon cancer cells through reactive oxygen species generation. Biol. Pharm. Bull. 35, 1054-1063. https://doi.org/10.1248/bpb.b11-00024
  11. Hunt, N. and McHale, S. (2005) The psychological impact of alopecia. BMJ 331, 951-953. https://doi.org/10.1136/bmj.331.7522.951
  12. Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S. E. and Cotsarelis, G. (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316-320. https://doi.org/10.1038/nature05766
  13. Ito, T. (2010) Hair follicle is a target of stress hormone and autoimmune reactions. J. Dermatol. Sci. 60, 67-73. https://doi.org/10.1016/j.jdermsci.2010.09.006
  14. Itoh, A., Isoda, K., Kondoh, M., Kawase, M., Kobayashi, M., Tamesada, M. and Yagi, K. (2009) Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Biol. Pharm. Bull. 32, 1215-1219. https://doi.org/10.1248/bpb.32.1215
  15. Jin, S., Pang, R. P., Shen, J. N., Huang, G., Wang, J. and Zhou, J. G. (2007) Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis 12, 1317-1326. https://doi.org/10.1007/s10495-007-0062-z
  16. Johnson, D. G. and Walker, C. L. (1999) Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39, 295-312. https://doi.org/10.1146/annurev.pharmtox.39.1.295
  17. Kang, J. I., Moon, J., Kim, E. J., Lee, Y. K., Koh, Y. S., Yoo, E. S., Kang, H. K. and Yim, D. (2013) The hair growth effects of wheat bran. Korean. J. Pharmacogn. 44, 384-390.
  18. Kang, J. I., Kim, S. C., Kim, M. K., Boo, H. J., Kim, E. J., Im, G. J., Kim, Y. H., Hyun, J. W., Kang, J. H., Koh, Y. S., Park, D. B., Yoo, E. S. and Kang, H. K. (2015) Effects of dihydrotestosterone on rat dermal papilla cells in vitro. Eur. J. Pharmacol. 757, 74-83. https://doi.org/10.1016/j.ejphar.2015.03.055
  19. Kwack, M. H., Kang, B. M., Kim, M. K., Kim, J. C. and Sung, Y. K. (2011) Minoxidil activates beta-catenin pathway in human dermal papilla cells: a possible explanation for its anagen prolongation effect. J. Dermatol. Sci. 62, 154-159. https://doi.org/10.1016/j.jdermsci.2011.01.013
  20. Lachgar, S., Charveron, M., Gall, Y. and Bonafe, J. (1998) Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br. J. Dermatol. 138, 407-411. https://doi.org/10.1046/j.1365-2133.1998.02115.x
  21. Lian, X., Zhao, J., Wu, X., Zhang, Y., Li, Q., Lin, S., Bai, X. Y. and Chen, X. (2017) The changes in glucose metabolism and cell proliferation in the kidneys of polycystic kidney disease mini-pig models. Biochem. Biophys. Res. Commun. 488, 374-381. https://doi.org/10.1016/j.bbrc.2017.05.060
  22. Meyerson, M. and Harlow, E. (1994) Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol. Cell. Biol. 14, 2077-2086. https://doi.org/10.1128/MCB.14.3.2077
  23. Monick, M. M., Carter, A. B., Robeff, P. K., Flaherty, D. M., Peterson, M. W. and Hunninghake, G. W. (2001) Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J. Immunol. 166, 4713-4720. https://doi.org/10.4049/jimmunol.166.7.4713
  24. Prall, O. W., Sarcevic, B., Musgrove, E. A., Watts, C. K. and Sutherland, R. L. (1997) Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J. Biol. Chem. 272, 10882-10894. https://doi.org/10.1074/jbc.272.16.10882
  25. Price, V. H. (1999) Treatment of hair loss. N. Engl. J. Med. 341, 964-973. https://doi.org/10.1056/NEJM199909233411307
  26. Shorter, K., Farjo, N. P., Picksley, S. M. and Randall, V. A. (2008) Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J. 22, 1725-1736. https://doi.org/10.1096/fj.07-099424
  27. Sinclair, R. (1998) Male pattern androgenetic alopecia. BMJ 317, 865-869. https://doi.org/10.1136/bmj.317.7162.865
  28. Soma, T., Tsuji, Y. and Hibino, T. (2002) Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J. Invest. Dermatol. 118, 993-997. https://doi.org/10.1046/j.1523-1747.2002.01746.x
  29. Stenn, K. S. and Paus, R. (2001) Controls of hair follicle cycling. Physiol. Rev. 81, 449-494. https://doi.org/10.1152/physrev.2001.81.1.449
  30. Stevenson, L., Phillips, F., O'sullivan, K. and Walton, J. (2012) Wheat bran: its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 63, 1001-1013. https://doi.org/10.3109/09637486.2012.687366
  31. Suzuki, K., Yamanishi, K., Mori, O., Kamikawa, M., Andersen, B., Kato, S., Toyoda, T. and Yamada, G. (2000) Defective terminal differentiation and hypoplasia of the epidermis in mice lacking the Fgf10 gene. FEBS Lett. 481, 53-56. https://doi.org/10.1016/S0014-5793(00)01968-2
  32. Tashiro, E., Tsuchiya, A. and Imoto, M. (2007) Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci. 98, 629-635. https://doi.org/10.1111/j.1349-7006.2007.00449.x
  33. Tosti, A., Zaiac, M. N., Canazza, A., Sanchis-Gomar, F., Pareja-Galeano, H., Alis, R., Lucia, A. and Emanuele, E. (2016) Topical application of the Wnt/beta-catenin activator methyl vanillate increases hair count and hair mass index in women with androgenetic alopecia. J. Cosmet. Dermatol. 15, 469-474. https://doi.org/10.1111/jocd.12225
  34. Wang, R., Zhao, Z., Zheng, L., Xing, X., Ba, W., Zhang, J., Huang, M., Zhu, W., Liu, B., Meng, X., Bai, J., Li, C. and Li, H. (2017) MicroRNA-520a suppresses the proliferation and mitosis of HaCaT cells by inactivating protein kinase B. Exp. Ther. Med. 14, 6207-6212.
  35. Whittaker, S. R., Mallinger, A., Workman, P. and Clarke, P. A. (2017) Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther. 173, 83-105. https://doi.org/10.1016/j.pharmthera.2017.02.008
  36. Yano, K., Brown, L. F. and Detmar, M. (2001) Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest. 107, 409-417. https://doi.org/10.1172/JCI11317

Cited by

  1. 콩제비꽃 전초 추출물의 모유두세포 증식 기전 vol.52, pp.1, 2020, https://doi.org/10.22889/kjp.2021.52.1.34
  2. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy vol.10, pp.11, 2020, https://doi.org/10.3390/cells10112957
  3. 삿갓사초 추출물의 모발 성장 기전 활성화 효과 vol.52, pp.4, 2020, https://doi.org/10.22889/kjp.2021.52.4.234