• Title/Summary/Keyword: Wnt/$\beta$-catenin signaling pathway

Search Result 74, Processing Time 0.022 seconds

Application of Stem Cells in Targeted Therapy of Breast Cancer: A Systematic Review

  • Madjd, Zahra;Gheytanchi, Elmira;Erfani, Elham;Asadi-Lari, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2789-2800
    • /
    • 2013
  • Background: The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. Material and Method: A systematic literature search was performed for original articles published from January 2007 until May 2012. Results: Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. $Wnt/{\beta}$-catenin signaling pathway has been also evidenced to be an attractive CSC-target. Conclusions: This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.

The Overexpression of Oncogenic Nemo-like Kinase in Gastric Cancer (위암에서 새로운 종양원인 유전자 Nemo-like Kinase의 발현 증가)

  • Kim, Min Gyu;Jung, Kwang Hwa;Nam, Suk Woo
    • YAKHAK HOEJI
    • /
    • v.56 no.6
    • /
    • pp.358-363
    • /
    • 2012
  • Nemo-like kinase (NLK), an evolutionarily conserved serine/threonine protein kinase, plays an important role in wide variety of developmental events. NLK phosphorylates T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional complex and suppresses wnt signaling pathway through inhibition of ${\beta}$-catenin/TCF complex interaction. However, the function of NLK in gastric carcinogenesis has not been investigated. In the present study, we have examined whether the NLK gene is involved in the development and/or progression of gastric cancers. NLK expression was analyzed by immunohistochemical staining in 153 advanced gastric cancer specimens. Immunhistochemical analysis showed increased expression of NLK in 91 (59.5%) out of 153 gastric cancer specimens. Statistically, there was no significant relationship between altered expression of NLK protein and clinicopathological parameters, including tumor differentiation, location, lymph node metastasis. We identified that mRNA and protein expression of NLK was significantly up-regulated in human gastric cancer tissues compare to corresponding normal gastric tissues. In addition, we found that human gastric cancer cell lines exhibited relatively high expression of NLK, as compared with normal gastric cells. The results of this study suggest that aberrant regulation of NLK may contribute to the development or progression of gastric cancers and serve as a potential biomarker for advanced gastric cancer patients.

Improvement of Lipid Homeostasis Through Modulation of Low-density Lipoprotein Receptor Family by Functional Ingredients (천연 기능성 물질(Functional Ingredients)을 활용한 LDL 수용체과(科) 조절과 지질항상성 개선)

  • Jeong, Jeongho;Ryu, Yungsun;Park, Kibeum;Go, Gwang-woong
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Dyslipidemia, defined as elevated triglyceride (TG), total- and LDL-C, and/or decreased HDL-C levels, is considered a principal risk factor for cardiovascular disease. The low-density lipoprotein receptor (LDLR) family has been considered a key player in the prevention of dyslipidemia. The LDLR family consists of cytoplasmic membrane proteins and plays an important role not only in ligand-receptor binding and uptake, but also in various cell signaling pathways. Emerging reports state that various functional ingredients dynamically modulate the function of the LDLR family. For instance, oats stimulated the LDLR function in vivo, resulting in decreased body weight and improved serum lipid profiles. The stimulation of LRP6 by functional ingredients in vitro activated the Wnt/${\beta}-catenin$ pathway, subsequently suppressing the intracellular TG via inhibition of SREBP1, $PPAR{\gamma}$, and $C/EBP{\alpha}$. Furthermore, the extract of Cistanchetubulosa enhanced the expression of the mRNA of VLDLR, followed by a reduction in the serum cholesterol level. In addition, fermented soy milk diminished TG and total cholesterol levels while increasing HDL-C levels via activation of LRP1. To summarize, modulating the function of the LDLR family by diverse functional ingredients may be a potent therapeutic remedy for the treatment of dyslipidemia and cardiovascular diseases.

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition (생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1054-1065
    • /
    • 2010
  • SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.