• Title/Summary/Keyword: Without catalytic metal

Search Result 44, Processing Time 0.027 seconds

Study on Graphene Thin Films Grown on Single Crystal Sapphire Substrates Without a Catalytic Metal Using Pulsed Laser Deposition

  • Na, Byoung Jin;Kim, Tae Hwa;Lee, Cheon;Lee, Seok-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.70-73
    • /
    • 2015
  • Many studies have used chemical vapor deposition (CVD) to grow graphene. However, CVD is inefficient in terms of production costs, and inefficient for mass production because a transfer process using a catalytic metal is needed. In this study, graphene thin films were grown on single crystal sapphire substrates without a catalytic metal, using pulsed laser deposition (PLD) to resolve these problems. In addition, the growth of graphene using PLD was confirmed to have a close relationship with the substrate temperature.

Oxidative Decomposition of TCE over TiO2-Supported Metal Oxide Catalysts (TiO2에 담지된 금속 산화물 촉매상에서 TCE 산화분해반응)

  • Yang Won-Ho;Kim Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.221-227
    • /
    • 2006
  • Oxidative TCE decomposition over $TiO_2$-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial $TiO_2$ were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D $TiO_2\;and\;CrO_x$ would be the respective promising support and active ingredient for the oxidative TCE decomposition. The $TiO_2-based\;CrO_x$ catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high $CrO_x$ contents for preparing $CrO_x/TiO_2$ catalysts might produce $Cr_2O_3$ crystallites on the surface of $TiO_2$, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported $CrO_x$-based bimetallic oxide systems offered a very useful approach to lower the $CrO_x$ amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

The Influence of a Second Metal on the Ni/SiC Catalyst for the Methanation of Syngas

  • Song, Lanlan;Yu, Yue;Wang, Xiaoxiao;Jin, Guoqiang;Wang, Yingyong;Guo, XiangYun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.678-687
    • /
    • 2014
  • The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% $H_2$ without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and $H_2$-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and $300^{\circ}C$ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.

A Study of Reactivity Improvement of Ni-based Methane Steam Reforming Catalysts by Small Addition of Noble Metals (미량 귀금속 첨가에 의한 Ni-계열 메탄 수증기 개질 촉매의 반응 활성 향상에 관한 연구)

  • Jeong, Jin-Hyeok;Koo, Kee-Young;Seo, Yu-Teak;Seo, Dong-Joo;Roh, Hyun-Seog;Seo, Yong-Seog;Lee, Deuk-Ki;Kim, Dong-Hyun;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.248-254
    • /
    • 2006
  • The promotion effects of noble metals upon the activity and reducibility in steam methane reforming over $Ni/MgAl_2O_4$ catalysts were investigated. While $Ni/MgAl_2O_4$ catalysts require the pre-reduction by $H_2$, the noble metal-added catalysts show high catalytic activities without pre-treatment. According to $CH_4$-TPR, the addition of noble metal makes the $Ni/MgAl_2O_4$ catalyst easily reducible. The reduction degree of NiO in the noble metal-added catalysts after using at $650^{\circ}C$ without pre-reduction was $15{\sim}20%$, and was lower than that in the $H_2$-reduced $Ni/MgAl_2O_4$ catalyst(reduction degree=27%). The enhancement of the catalytic activity over noble metal-added catalysts results from easier reducibility by addition of noble metal and the synergy effect between noble metal and Ni.

Catalytic Effects of Barium Carbonate on the Anodic Performance of Solid Oxide Fuel Cells

  • Yoon, Sung-Eun;Ahn, Jae-Yeong;Park, Jong-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.350-355
    • /
    • 2015
  • To develop ceramic composite anodes of solid oxide fuel cells without metal catalysts, a small amount of barium carbonate was added to an $(La_{0.8}Sr_{0.2})(Cr_{0.5}Mn_{0.5})O_3(LSCM)$ - YSZ ceramic composite anode and its catalytic effects on the electrode performance were investigated. A barium precursor solution with citric acid was used to synthesize the barium carbonate during ignition, while a barium precursor solution without citric acid was used to create hydrated barium hydroxide. The addition of barium carbonate to the ceramic composite anode caused stable fuel cell performance at 1073 K; this performance was higher than that of a fuel cell with $CeO_2$ catalyst; however, the addition of hydrated barium hydroxide to the ceramic composite anode caused poor stability of the fuel cell performance.

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.

Catalytic Mechanism for Growth of Carbon Nanotubes under CO-H2 Gas Mixture

  • Chung, Uoo-Chang;Kim, Yong-Hwan;Lee, Deok-Bo;Jeong, Yeon-Uk;Chung, Won-Sub;Cho, Young-Rae;Park, Ik-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.103-106
    • /
    • 2005
  • In order to investigate the catalytic mechanism for the growth of carbon nanotubes (CNTs), a comprehensive study was conducted using carbon materials synthesized at 680 ${^{\circ}C}$ with a gas mixture of CO-H$_2$ after reduction at 800 ${^{\circ}C}$ by H$_2$ gas from iron oxide, and metal Pt. The resulting material was observed by scanning electron microscopy (SEM) and X-ray diffraction patterns (XRD) after a variety of reaction times. The carbon materials synthesized by metal Pt were little affected by reaction time and the sintered particles did not form CNTs. Xray analysis revealed that metal Fe was completely converted to iron carbide (Fe$_3$C) without Fe peaks in the early stage. After 5 min, iron carbide (Fe$_3$C) and carbon (C) phases were observed at the beginning of CNTs growth. It was found that the intensity of the carbon(C) peak gradually increased with the continuous growth of CNTs as reaction time increases. It was also found that the catalyst of growth of CNTs was metal carbide.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure

  • Gong, Qing;Luo, Huadong;Cao, Di;Zhang, Haibo;Wang, Wenjing;Zhou, Xiaohai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1945-1948
    • /
    • 2012
  • Rhodamine B (RhB) and rhodamine 6G (Rh6G) were employed as catalysts for the synthesis of cyclic carbonate from carbon dioxide and epoxide. It turned out that the catalytic activity of Rh6G was nearly 29 times higher than that of RhB at 1 atm pressure, $90^{\circ}C$. Furthermore, the catalytic efficiency of RhB and Rh6G was greatly enhanced with triethylamine as co-catalyst. Under the optimized conditions, the best isolated yield (93%) of cyclic carbonate was achieved without organic solvent and metal component.