• Title/Summary/Keyword: Wireless power transfer systems

Search Result 147, Processing Time 0.023 seconds

Resource allocation in downlink SWIPT-based cooperative NOMA systems

  • Wang, Longqi;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.20-39
    • /
    • 2020
  • This paper considers a downlink multi-carrier cooperative non-orthogonal multiple access (NOMA) transmission, where no direct link exists between the far user and the base station (BS), and the communication between them only relies on the assist of the near user. Firstly, the BS sends a superimposed signal of the far and the near user to the near user, and then the near user adopts simultaneous wireless information and power transfer (SWIPT) to split the received superimposed signal into two portions for energy harvesting and information decoding respectively. Afterwards, the near user forwards the signal of the far user by utilizing the harvested energy. A minimum data is required to ensure the quality of service (QoS) of the far user. We jointly optimize power allocation, subcarrier allocation, time allocation, the power allocation (PA) coefficient and the power splitting (PS) ratio to maximize the number of data bits received at the near user under the energy causality constraint, the minimum data constraint and the transmission power constraint. The block-coordinate descent method and the Lagrange duality method are used to obtain a suboptimal solution of this optimization problem. In the final simulation results, the superiority of the proposed NOMA scheme is confirmed compared with the benchmark NOMA schemes and the orthogonal multiple access (OMA) scheme.

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.

Analysis and Modeling of Wireless Power Transfer Systems using Magnetically Coupled Resonator Scheme with Relay Coils (릴레이 코일을 포함한 자기 공명 방식 무선 전력 전송 시스템의 분석 및 모델링)

  • Park, Hee-Su;Kwon, Min-Sung;Kim, Min-Ji;Park, Hyeon-Min;Ku, Hyun-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.69-78
    • /
    • 2014
  • In this paper, characteristics of wireless power transfer (WPT) systems using magnetically coupled resonance scheme with relay coils are investigated and modeled. Especially, asymmetric frequency splitting characteristics in over-coupled region of WPT with relays are measured and accurately modeled. Transmitter, receiver, and relay coils are modeled with R, L, C equivalent circuits. Using these circuit models and mutual inductances between coils, a WPT system is described with a linear matrix equation. For under-coupled region, a matrix is simplified considering only mutual inductances between adjacent coils. An analytical transfer characteristic of WPT system vs. distance is extracted using an inverse matrix that is acquired by Gauss elimination method for the simplified matrix. For over-coupled region, a matrix considering mutual inductances between non-adjacent coils is used to predict a frequency splitting characteristics accurately. A 6.3MHz WPT system with relay coils is implemented and measured. An accuracy of the model is investigated by comparing the output of the model with the measured results.

Parameters of a guiding coil for wireless power transfer (근거리 전송에 적합한 가이딩 코일의 파라미터)

  • Woo, Dae-Woong;Kim, Jae-Hee;Lee, Dong-Hyun;Park, Kyung-Ho;Park, Wee-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.345-346
    • /
    • 2008
  • We analyzed the structural parameters of a guiding coil and a feeding loop for wireless power transfer in mid-range. The length, diameter, and number of turns of the guiding coil are the major factors to determine the resonant frequency. The separation distance between the coil and the loop also affects the power transfer ratio. This scheme has a greater transmission efficiency than using dipoles.

  • PDF

Charging Control of Wireless Charging System (무선충전시스템의 충전 제어 방식)

  • Shin, Han-Ho;Heo, Joon;Jeon, Seong-Jeub
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.303-309
    • /
    • 2019
  • A hybrid control of a rectifier/regulator of wireless power transfer systems for electric vehicles is studied. A combined rectifier/regulator is used for charging control. The hybrid control comprises integral cycle control and pulse width modulation control to cope with the variations in the induced voltage due to clearance and alignment. The hybrid control has good control capability and does not cause severe switching loss. A 22 kW prototype of the Wireless Power Transfer class 4 charging system defined by the Society of Automotive Engineers is constructed and tested to verify the proposal.

A Development of the Electric Power Supply System for PRT Vehicle (PRT 차량의 전력 공급시스템 개발)

  • Kim, Baek-Hyun;Jeong, Rag-Gyo;Chung, Sang-Gi;Kang, Seok-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.196-200
    • /
    • 2013
  • In this paper, the design of PRT vehicle power supply system is discussed. Since there is no power feeding line facilities in PRT system under development, the PRT vehicle must have its own energy storage device on board. For the energy storage device, ultra-capacitor bank is applied due to its fast charging capability and long life time. Charging the Ultra-capacitor bank is performed by wireless inductive power transfer system. The capacitor bank is charged up in less than 10 seconds when the vehicle is traveling by passenger stations. In this paper the design of the ultra-capacitor bank and the wireless inductive power transfer system for the PRT vehicle are discussed. Tests are conducted for the both system and the result shows the efficiency of the wireless inductive power transfer system is higher than 80%.

Analysis of RF-DC Conversion Efficiency of Composite Multi-Antenna Rectifiers for Wireless Power Transfer

  • Deng, Chao;Huang, Kaibin;Wu, Yik-Chung;Xia, Minghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5116-5131
    • /
    • 2017
  • This paper studies the radio frequency to direct current (RF-DC) conversion efficiency of rectennas applicable to wireless power transfer systems, where multiple receive antennas are arranged in serial, parallel or cascaded form. To begin with, a 2.45 GHz dual-diode rectifier is designed and its equivalent linear model is applied to analyze its output voltage and current. Then, using Advanced Design System (ADS), it is shown that the rectifying efficiency is as large as 66.2% in case the input power is 15.4 dBm. On the other hand, to boost the DC output, three composite rectennas are designed by inter-connecting two dual-diode rectifiers in serial, parallel and cascade forms; and their output voltage and current are investigated using their respective equivalent linear models. Simulation and experimental results demonstrate that all composite rectennas have almost the same RF-DC conversion efficiency as the dual-diode rectifier, yet the output of voltage or current can be significantly increased; in particular, the cascade rectenna obtains the highest rectifying efficiency.

Resource Allocation Algorithm Based on Simultaneous Wireless Information and Power Transfer for OFDM Relay Networks

  • Xie, Zhenwei;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5943-5962
    • /
    • 2017
  • A resource allocation algorithm based on simultaneous wireless information and power transfer (SWIPT) to maximize the system throughput is proposed in orthogonal frequency division multiplexing (OFDM) relay networks. The algorithm formulates the problem under the peak power constraints of the source and each subcarrier (SC), and the energy causality constraint of the relay. With the given SC allocation of the source, we give and prove the optimal propositions of the formulated problem. Then, the formulated problem could be decomposed into two separate throughput maximization sub-problems by setting the total power to transfer energy. Finally, several SC allocation schemes are proposed, which are energy priority scheme, information priority scheme, balanced allocation scheme and exhaustive scheme. The simulation results reveal that the energy priority scheme can significantly reduce computational complexity and achieve approximate performance with the exhaustive scheme.

Receiver Protection from Electrical Shock in Vehicle Wireless Charging Environments

  • Park, Taejun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.677-687
    • /
    • 2020
  • This paper deals with the electrical shock that can occur in a car wireless charging system. The recently released the Wireless Power Consortium (WPC) standard specifies that the receiver must be protected from the radio power generated by the transmitter and presents two scenarios in which the receiver may be subjected to electrical shock due to the wireless power generated by the transmitter. The WPC also provides a hardware approach for blocking the wireless power generated by the transmitter to protect the receiver in each situation. In addition, it presents the hardware constraints that must be applied to the transmitter and the parameters that must be constrained by the software. In this paper, we analyze the results of the electric shock in the vehicle using the WPC certified transmitter and receiver in the scenarios presented by WPC. As a result, we found that all the scenarios had electrical shocks on the receiver, which could have a significant impact on the receiver circuitry. Therefore, we propose wireless power transfer limit (WPTL) algorithm to protect receiver circuitry in various vehicle charging environments.

Development of Four-Way Analog Beamforming Front-End Module for Hybrid Beamforming System

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.254-259
    • /
    • 2020
  • Phased-array antennas comprise a demanding antenna design methodology for commercial wireless communication systems or military radar systems. In addition to these two important applications, the phased-array antennas can be used in beamforming for wireless charging. In this study, a four-way analog beamforming front-end module (FEM) for a hybrid beamforming system is developed for 2.4 GHz operation. In a hybrid beamforming scheme, an analog beamforming FEM in which the phase and amplitude of RF signal can be adjusted between the RF chain and phased-array antenna is required. With the beamforming and beam steering capability of the phased-array antennas, wireless RF power can be transmitted with high directivity to a designated receiver for wireless charging. The four-way analog beamforming FEM has a 32 dB gain dynamic range and a phase shifting range greater than 360°. The maximum output RF power of the four-way analog beamforming FEM is 40 dBm (=10 W) when combined the four individual RF paths are combined.