• Title/Summary/Keyword: Wireless mobile networks

Search Result 1,351, Processing Time 0.028 seconds

Selection of Machine Learning Techniques for Network Lifetime Parameters and Synchronization Issues in Wireless Networks

  • Srilakshmi, Nimmagadda;Sangaiah, Arun Kumar
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.833-852
    • /
    • 2019
  • In real time applications, due to their effective cost and small size, wireless networks play an important role in receiving particular data and transmitting it to a base station for analysis, a process that can be easily deployed. Due to various internal and external factors, networks can change dynamically, which impacts the localisation of nodes, delays, routing mechanisms, geographical coverage, cross-layer design, the quality of links, fault detection, and quality of service, among others. Conventional methods were programmed, for static networks which made it difficult for networks to respond dynamically. Here, machine learning strategies can be applied for dynamic networks effecting self-learning and developing tools to react quickly and efficiently, with less human intervention and reprogramming. In this paper, we present a wireless networks survey based on different machine learning algorithms and network lifetime parameters, and include the advantages and drawbacks of such a system. Furthermore, we present learning algorithms and techniques for congestion, synchronisation, energy harvesting, and for scheduling mobile sinks. Finally, we present a statistical evaluation of the survey, the motive for choosing specific techniques to deal with wireless network problems, and a brief discussion on the challenges inherent in this area of research.

Design and Implementation of Embedded Linux-based Personal Mobile Broadcasting Service (임베디드 리눅스 기반의 개인 모바일 방송국 서비스 설계 및 구현)

  • Kim, Do-Hyung;Kim, Sun-Ja;Lee, Cheol-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.441-450
    • /
    • 2009
  • This paper describes the design and implementation of Personal Mobile Broadcasting Service which bases on embedded Linux and it supports personal broadcasting in wireless network environments. Recently, with the advent of various wireless networks and the increased use of high performance mobile devices, the demand for personal mobile broadcasting is being increased. The personal mobile broadcasting service makes it possible that mobile users create contents using their own mobile devices while they are moving or they are in any place. And then, it sends the created contents to server in real-time where their blogs are. Users connected to the content creator's blog can play the contents in real-time. With the implemented personal mobile broadcasting service, mobile users can share multimedia contents in real-time through wireless networks. And, it also helps users to construct their own broadcasting stations where they can broadcast the scene of the accident or public performance in real-time.

Effective IPv6 Address Allocation Mechanism in All IP Wireless Networks (차세대 이동통신망에서 효율전인 IPv6 주소할당 방안)

  • 정현철;민상원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.240-249
    • /
    • 2004
  • For the effective IP-based service implementation in the wireless network environment, involvement of IP-related technologies in wireless networks is inevitable and globally unique IPv6 address allocation to the mobile node has become an important issue. In the 3GPP's address allocation mechanism, IPv6 address allocation procedure is performed by the GGSN, which is normally located far from the mobile nodes. This causes IPv6 address allocation time delay and traffics to be longer and increased in the core network, respectively. In this paper, we propose a new IPv6 address allocation mechanism that is performed by Node B located in RAN. The proposed IPv6 address allocation mechanism can provide IPv6 addresses to mobile nodes within a more reduced time than existing 3GPP's IPv6 address allocation mechanism, and co-operates with existing mechanism as an overlay model to improve reliability of wireless networks. And, for implementation of the proposed address allocation mechanism, it needs not to change the structure of current wireless networks except for the some functional addendum of Node B.

Simulation model of a multihomed node with WiMAX and WLAN (WiMAX - WLAN 멀티홈드 노드의 시뮬레이션 모델)

  • Zhang, Xiao-Lei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.111-119
    • /
    • 2010
  • With the rapid progress of wireless technologies today, mobile terminals with multiple access interfaces are emerging. In recent years, WLAN (Wireless Local Area Networks) has become the premier choice for many homes and enterprises. WiMAX (Worldwide Interoperability for Microwave Access) has also emerged as the wireless standard that aims to deliver data over long distances. Therefore, it is important to explore efficient integration methods for delivering multimedia data between heterogeneous wireless networks. In this paper, we developed the simulation models and environments for the mobile multihomed node that has both WiMAX and WLAN interfaces and can move around in both networks by using mobile IP. In order to verify the developed models, we designed and constructed several simulation scenarios, e.g. movement in WiMAX/WLAN, group mobility, MANET, and nested MIP under the various traffic environments such as oneway or bothway UDP packets, FTP traffic, and voice with SIP protocol. The simulation results show that the developed models are useful for mobility studies in various integrated wireless networks.

Recovery-Key Attacks against TMN-family Framework for Mobile Wireless Networks

  • Phuc, Tran Song Dat;Shin, Yong-Hyeon;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2148-2167
    • /
    • 2021
  • The proliferation of the Internet of Things (IoT) technologies and applications, especially the rapid rise in the use of mobile devices, from individuals to organizations, has led to the fundamental role of secure wireless networks in all aspects of services that presented with many opportunities and challenges. To ensure the CIA (confidentiality, integrity and accessibility) security model of the networks security and high efficiency of performance results in various resource-constrained applications and environments of the IoT platform, DDO-(data-driven operation) based constructions have been introduced as a primitive design that meet the demand of high speed encryption systems. Among of them, the TMN-family ciphers which were proposed by Tuan P.M., Do Thi B., etc., in 2016, are entirely suitable approaches for various communication applications of wireless mobile networks (WMNs) and advanced wireless sensor networks (WSNs) with high flexibility, applicability and mobility shown in two different algorithm selections, TMN64 and TMN128. The two ciphers provide strong security against known cryptanalysis, such as linear attacks and differential attacks. In this study, we demonstrate new probability results on the security of the two TMN construction versions - TMN64 and TMN128, by proposing efficient related-key recovery attacks. The high probability characteristics (DCs) are constructed under the related-key differential properties on a full number of function rounds of TMN64 and TMN128, as 10-rounds and 12-rounds, respectively. Hence, the amplified boomerang attacks can be applied to break these two ciphers with appropriate complexity of data and time consumptions. The work is expected to be extended and improved with the latest BCT technique for better cryptanalytic results in further research.

Congestion Detection for QoS-enabled Wireless Networks and its Potential Applications

  • Ramneek, Ramneek;Hosein, Patrick;Choi, Wonjun;Seok, Woojin
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.513-522
    • /
    • 2016
  • We propose a mechanism for monitoring load in quality of service (QoS)-enabled wireless networks and show how it can be used for network management as well as for dynamic pricing. Mobile network traffic, especially video, has grown exponentially over the last few years and it is anticipated that this trend will continue into the future. Driving factors include the availability of new affordable, smart devices, such as smart-phones and tablets, together with the expectation of high quality user experience for video as one would obtain at home. Although new technologies such as long term evolution (LTE) are expected to help satisfy this demand, the fact is that several other mechanisms will be needed to manage overload and congestion in the network. Therefore, the efficient management of the expected huge data traffic demands is critical if operators are to maintain acceptable service quality while making a profit. In the current work, we address this issue by first investigating how the network load can be accurately monitored and then we show how this load metric can then be used to provide creative pricing plans. In addition, we describe its applications to features like traffic offloading and user satisfaction tracking.

Weighted Centroid Localization Algorithm Based on Mobile Anchor Node for Wireless Sensor Networks

  • Ma, Jun-Ling;Lee, Jung-Hyun;Rim, Kee-Wook;Han, Seung-Jin
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Localization of nodes is a key technology for application of wireless sensor network. Having a GPS receiver on every sensor node is costly. In the past, several approaches, including range-based and range-free, have been proposed to calculate positions for randomly deployed sensor nodes. Most of them use some special nodes, called anchor nodes, which are assumed to know their own locations. Other sensors compute their locations based on the information provided by these anchor nodes. This paper uses a single mobile anchor node to move in the sensing field and broadcast its current position periodically. We provide a weighted centroid localization algorithm that uses coefficients, which are decided by the influence of mobile anchor node to unknown nodes, to prompt localization accuracy. We also suggest a criterion which is used to select mobile anchor node which involve in computing the position of nodes for improving localization accuracy. Weighted centroid localization algorithm is simple, and no communication is needed while locating. The localization accuracy of weighted centroid localization algorithm is better than maximum likelihood estimation which is used very often. It can be applied to many applications.

  • PDF

Object Segment Grouping for Wireless Mobile Streaming Media Services (무선 모바일 스트리밍 미디어 서비스를 위한 객체 세그먼트 그룹화)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.199-206
    • /
    • 2012
  • Increment of mobile client's information request in wireless mobile networks requires a new method to manage and serve the streaming media object. This paper proposes a new object segment grouping method for enhancing the performance of streaming media services in wireless mobile networks. The proposed method performs the similarity metric for the partitioned object segments, and it process the disjunction, conjunction, and filtering for these metrics. This paper was to decided the partitioned group of object segments for these operation metrics, and it decided the performance of streaming media services. The simulation result showed that the proposed method has better performance in throughput, average startup latency, and cache hit ratio.

A Leader Election Algorithm and Performance Evaluation for Mobile Ad hoc Networks (이동 에드 혹 네트워크를 위한 제어노드 선택 알로리즘 및 성능 평가)

  • Parvathipuram Pradeep;Yang Gi-Chul;Oh Sooyul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.829-834
    • /
    • 2004
  • Nodes communicate through wireless channels under peer-to-peer level in ad-hoc mobile networks. The nodes are free to move around in a geographical area and are loose]y bounded by the transmission range of the wireless channels. Also, a node is completely free to move around, there is no fixed final topology. Hence, to manage the inter-node communication and data exchange among them a leader node is required. In this paper we introduce an efficient leader election algorithm for mobile ad hoc networks where inter-node communication is allowed only among the neighboring nodes. Furthermore we present the result of performance evaluation through simulation. The algorithm is efficient and practical since it uses least amount of wireless resources and does not affect the movement of the nodes.

EEDARS: An Energy-Efficient Dual-Sink Algorithm with Role Switching Mechanism for Event-Driven Wireless Sensor Networks

  • Eslaminejad, Mohammadreza;Razak, Shukor Abd;Ismail, Abdul Samad Haji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2473-2492
    • /
    • 2012
  • Energy conservation is a vital issue in wireless sensor networks. Recently, employing mobile sinks for data gathering become a pervasive trend to deal with this problem. The sink can follow stochastic or pre-defined paths; however the controlled mobility pattern nowadays is taken more into consideration. In this method, the sink moves across the network autonomously and changes its position based on the energy factors. Although the sink mobility would reduce nodes' energy consumption and enhance the network lifetime, the overhead caused by topological changes could waste unnecessary power through the sensor field. In this paper, we proposed EEDARS, an energy-efficient dual-sink algorithm with role switching mechanism which utilizes both static and mobile sinks. The static sink is engaged to avoid any periodic flooding for sink localization, while the mobile sink adaptively moves towards the event region for data collection. Furthermore, a role switching mechanism is applied to the protocol in order to send the nearest sink to the recent event area, hence shorten the path. This algorithm could be employed in event-driven and multi-hop scenarios. Analytical model and extensive simulation results for EEDARS demonstrate a significant improvement on the network metrics especially the lifetime, the load and the end-to-end delay.