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A Leader Election Algorithm and Performance Evaluation for
Mobile Ad hoc Networks

Pradeep Parvathipuram' - Gi-Chul Yang'" - Sooyul Oh"

ABSTRACT

Nodes communicate through wireless channels under peer-to-peer level in ad-hoc mobile networks. The nodes are free to move around in
a geographical area and are loosely bounded by the transmission range of the wireless channels. Also, a node is completely free to move around,
there is no fixed final topology. Hence, to manage the inter-node communication and data exchange among them a leader node is required. In
this paper we introduce an efficient leader election algorithm for mobile ad hoc networks where inter-node communication is allowed only among
the neighboring nodes. Furthermore we present the result of performance evaluation through simulation. The algorithm is efficient and practical
since it uses least amount of wireless resources and does not affect the movement of the nodes.
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1. Introduction

The leader election problem originally appeared in token
ring network for managing the use of tokens [1]. The prob-
lem resurfaced again in ad hoc or dynamic networks, how-
ever, with added complexity. Since then a number of papers
have discussed the nature of algorithms [2-5] and to our
knowledge only few papers [2,3] have presented such
algorithms. One of the main reasons for such lack of work
in this area is the complexity involved in finding an efficient

solution for a highly dynamic network. Unlike conventional

3% This work was supported by Mokpo National University through Interna
tional Cooperative Research Program.
+ ] 3] 91 : Sprint Corporations, System Developer
g s YR YRR wy
EEHT 12004 59 39, AR 2004 791 279

& (Leader Election)

distributed systems, designing a leader election algorithm
for mobile ad hoc networks is challenging mainly because
(a) the nodes are highly mobile, (b) the mean time failure
of these nodes are relatively high compared to static wired
network nodes, (c) the transmission range and bandwidth
of wireless channels are limited, (d) neighbor configuration
may change randomly, and (e) there is no fixed network
topology. For these reasons, an efficient leader election al-
gorithm must do everything, which an algorithm for static
networks does, and in addition it must handle the move-
ment of the nodes. Furthermore, the algorithm must guar-
antee that (a) there should be a leader at the end of the
execution of the algorithm and (b) there cannot be more

than one leader in a single connected component.
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Our aim is to develop an efficient leader election (identifi-
cation) scheme for this highly dynamic system that (a) in-
curs minimum messaging cost and time to elect a leader
(b) is correct, that is, at any time there cannot be two or
more conflicting leaders in the network, and (c) it does not
hinder or restrict the geographical movement of nodes. In
our approach we do not impose any specific structure for

the mobile ad hoc network.

2. The Algorithm

The algorithm basically selects the largest identity node
as the leader using minimum wireless messages. A mobile
ad hoc network can be considered as a static network with
frequent link or node failures, which can be thought of as
a mobile node of an ad hoc network going out of reach.
We use the diameter concept to cover all the nodes in the
network. A diameter is defined as the longest distance be-
tween any two nodes in the network where the distance
is defined as the shortest path between the nodes. In
(Figure 2), the diameter of the network is 6, which is the
distance between the nodes L and 1. The distance metric
is measured in number of hops. We assume the network
gets stabilized after a single change occurs during leader
election process. We further assume that there are only a
finite number of changes in the network. The steps of the
algorithm can be stated briefly as follows and later we pro-
vide the pseudo code for the algorithm.

Consider a network of N nodes. Our algorithm may take
more than diameter rounds to terminate since the topo-
logical changes are considered during the leader election.
If, however, the topological changes are not considered,

then it takes diameter rounds to elect the leader.

2.1 Leader election

For each round, each node propagates its unique identifier
to its neighbors and a maximum identifier is elected as a
leader. This maximum identifier is propagated in the sub-
sequent rounds. All the rounds need to be synchronized.
idlist (i) identifies identifier list for node;, which consists
of all the neighbors for node;. Lid(i) = max(idlist(i))

2.2 Termination
At (rounds >= diameter), for each node;
If all identifiers in idlist (i) are the same, then the node;

stops sending the maximum identifier further and elects the

maximum identifier in the idlist (i) as the leader. The termi-
nation may not be at the end of the diameter rounds, the
algorithm gets terminated if for each node; the elements
in idlist (for each node) are the same.

Algorithm :

For each node i in the network, we have the following.

idlist - Identifier list, lid(i) - leader id of node i

For each round,

Begin
Each node say node; transmits its unique identifier in the
first round and Lid(i) in the subsequent rounds to their
neighbors and all these ids will be stored in idlist.
Lid(i) = max (idlist(i)};

End

A unique leader is elected in diameter rounds, if there are no

. topological changes in the network. The algorithm is modified

to incorporate topological changes in between the rounds and

below is the description of how the algorithm is modified,

e Casel : If a node has no outgoing links then lid(i) =1,
e Case 2 : If a node leaves between the rounds, then the
neighbors would know this. Suppose node; leaves the
network dafter round r and let its neighbors be j and k.

Begin
¥ neighbors of i (ie. j, k).
Delete (ilist, idlist(j & k)) // delete ilist from idlist
Where ilist contains the group of identifiers that node; has sent
to its neighbors before round r along with i.
The ilist information is also deleted from all the neighbors of
j and k if the ilist identifiers have been propagated in the pre-
vious rounds. This process continues until all the nodes in the
network are covered.
While (round > = diameter), // Termination condition
Begin
V nodes in the network
say for node;,
compare all the identifiers present in idlist(i)
If all the identifiers in idlist(i) are equal, node; stops prop—
agating its maximum identifier and elects the maximum
identifier as the leader.
All nodes in the network follow this process and a unique
leader is elected in a single connected component.
End //end of while loop
End //end of case 2

e Case3 : If a new node i joins the network in between
the rounds say round r then the neighbors will update
its idlist.

Begin
Y Neighbors of i say nodej is the neighbor for node
add (i, idlist(j));

The normal algorithm continues (the ids are propagated), no-
des keep exchanging the information till diameter rounds.

while (round > = diameter),



Begin

YV nodes in the network. Say nodej, and nodej receives

an identifier i at diameter round.

If i is greater than the maximum identifier nodej has

propagated in the previous round (diameter 1),
Propagate node, to all the neighbors of j.
Also propagate the node, information to all the
neighbors of neighbors of i until the whole net-
work is covered, if the above condition sa-
tisfies.

Else Do not propagate the information.

¥ nodes in the network  // Termination Condition

say for node;,

compare all the identifiers present in idlist(i)

If all the identifiers in idlist(i) are equal, node; stops prop-

agating its maximum identifier and elects the maximum

identifier as the leader.

All nodes in the network follow this process and a unique

leader is elected in a single connected component.

//end of the while loop
//end of case3

End
End

So the time taken for the algorithm to elect a leader will
be O (diam + At) where At is the time taken for all the nodes
to converge and At depends on the topology changes in the
network (At might be the time taken for few more rounds).
The algorithm terminates when all nodes have exactly one
identifier as a leader.

The message complexity for the leader election algorithm
depends on the network topology and the number of mes-
sages propagated as the topology changes. Even for multi-
ple concurrent changes in the network, our algorithm en-
sures only one leader but the time At may increase. Since
all the cases are considered in the algorithm, even if multi-
ple topological changes occur the algorithm can still elect
a unique leader as different cases are called for different

changes in the network at different times.

3. Handling Goncurrent Multiple Topology Changes

When multiple topology changes occur, the algorithm
should still be in a position to elect a single leader. For ex-
ample, when the new leader information is to be propagated
in the network, a topology change, like a link failure may
occur and the required information may not be able to prop-
agate through out the network. The algorithm should elect
a single leader even in such scenarios. We consider differ-

ent cases.

» Casel : When two components merge together, the
leader with the largest id is elected as new leader and
that information is propagated in the component with the
defeated leader id. During the propagation, if another
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new component comes into the network or a partition
occurs in the network then the timestamps are compared
and the id with the highest timestamp is propagated in

the whole component.

Let C1 and C2 be with leaders lid] and lid2.

if (lid1 > lid2) then propagate (lidl, C2, t)
// propagated at time t

else propagate (lid2, C1, t)
During this propagation if a new node comes into the network
or a network partition occurs, then the new leader id in-
formation will be propagated with a different time stamp. Now
the time stamps are compared and the one with the most recent
time stamp is propagated through out the network and is
elected as the leader.

e Case 2 : If a partition occurs in the network, the node
that detects the partition will be elected as a leader and
this information is propagated through out the com-
ponent. The timestamp is also included in the propagated
message so that if a new component comes in, the /ids
can be compared based on the timestamps. Algorithm

for the propagate function is given below.

Propagate (lid, comp, t)

int oid;, //oid is the old leader id of the nodes in the
component.

nid=1Ilid; // nid is the new leader id that needs to be propa-
gated

if (oid <> nid) then
broadcast nid to all the children (all the nodes that are
at distance of one hop) of that node. Let this set of nodes
be k

else  do not broadcast

For each k repeat the if loop. During the propagation, if some

other process like partition or failure of a link happens. Then

let the time stamps of the two processes be tl, t2.

For a node

if (t1 > t2) then accept the id at t1, broadcast it and delete the

idat t2

else accept the id at t2, broadcast it and delete the id at t]

The timestamp in case of partition is the time that has
been assigned when the node first detects the partition.
When two components merge together, the node that de-
cides to propagate the new id sets the timestamp and
this timestamp should be the same through out the pro-
pagation.

The above algorithm can handle concurrent changes.
Since we are assuming only finite number of topological
changes to occur, the algorithm would definitely converge
and only one leader gets elected in a single connected
component.



832 MEM2ER=EXIC M11-CH H622(2004.12)

4, Simulation Model and Performance Evaluation

We studied the performance of our algorithm with NS2
simulator [15]. We use a simple network with the mobile
nodes and use the propagation models to check if the pack-
ets are received successfully. Free space model is used for
short distances and Tworayground model is used for long
distances. These models predict the received signal power
of each packet. At the physical layer receiving threshold
is defined. When a packet is received and if its receiving
signal power is less than the receiving threshold, then the
packet is dropped by the MAC layer. IEEE 802.11 MAC
is implemented in NS which handles collision detection,
fragmentation and acknowledgements. 802.11 is a CSMA
protocol which checks for the availability of channel before
sending data on to that channel. If the channel is not avail-
able, it waits for a random amount of time and then trans-
mits the data.

Channel implementation is based on the shared media
model. Every mobile node has different interfaces for con-
necting to the channel. Each channel has a particular fre-
quency with a particular modulation scheme. A packet is
received if the transmission range falls within the radio
propagation model.

The shared media parameters need to be set to make it
work like the 914MHz Lucent WaveLAN DSSS radio
interface. <Table 1> lists the input parameters for an ad hoc
network. The parameters specified in <Table 1> are used
to establish communication between the mobile nodes,
which include the capture threshold {(cpthresh), carrier
sense threshold (csthresh), receive power threshold (rxthresh),
bandwidth (rb), transmission power (pt) and frequency
(freq). The propagation model and Pt determines the re-
ceived signal power of each packet. The packet cannot be
correctly received if received power is below rxthresh. We
measure the time for leader election, which is the output

parameter in our simulation.

{Table 1> Simulation parameters and their values

Simulation System Parameters Values
Propagation model Tworayground
MAC 802_11
Ad hoc routing protocol ZRP
Topography dimensions 670 x 670
Capture threshold (CPThresh_)(db) 100
Carrier sense threshold (CSThresh_)(db) 1.569e-11
Receive power threshold (RXThresh_)(db) 3.652e-10
Bandwidth (Rb_) 2+ 1eb
Transmission power(Pt_) 0.2818
Frequency(freq_) 914e +6

¢ Node movement and traffic : Every node can be
moved from one place to other by specifying the destina-
tion with (x, y). The setdest command is used to move
the mobhile nodes. Also the traffic can be sent between
the mobile nodes i.e. both tcp and udp traffic can be sent.
Scalability issue : We have evaluated the performance

of the algorithm by scaling the network size i.e. by in-
creasing the number of nodes. We considered networks
with different topologies and diameters. We have started
with 2 nodes and then increased the size to 10 nodes.
The topological changes are made while the algorithm
is executing in between rounds. (Figure 3) shows that
the leader has been elected in each topology according
to the algorithm specified. The different topologies con-
sidered are a 3-node network with diameter 2, 4-node
network with diameter 2, 5-node network with diameter
3, 6-node network with diameter 4, 7-node network with
diameter 4, 8—pode network with diameter 5, 9 and
10-node network with diameters 5. The network top-
ologies are taken in such a way that as the network size
increases, the nodes come together and the diameter is
reduced. We have implemented all the cases described
in the algorithm. The time for election does vary as the
time entirely depends on the topology and the type of
topology that has occurred.

(Figure 1) shows that the leader gets elected in every
network under consideration and as the network size in—
creases, the leader election time is reduced because as the
network size increases, the mobile nodes come physically
close and the network diameter reduces. Since the time
taken according to the algorithm is O (diam + Af), time is
directly proportional to the diameter. We notice that for
7-node network, the graph deviates from the linear fashion
because its diameter is 4, which is same as that for 6-node
network. The same situation can be seen with 9 and
10-node networks. We have considered a single topology
¢hange after which the network gets stabilized and have
incorporated the changes at different rounds in different
topologies.

Consider the scenario where the leader has been already

elected. We discuss three cases :

® Casel : A new node comes into the network with an
id greater than the current leader of the network. In such
a scenario, the new id should be elected as a leader and
this information needs to be propagated through out the



network.

e Case 2 : If the new node id is smaller than the leader
in the network, then nothing has to be done.

s Case3 : If a node leaves the network, two cases arise :
(a) the node that leaves is a leader and (b) the moved
node is not a leader. If the node that has moved is not

a leader, then no change has to be done.
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(Figure 2) shows the time comparison between case 1
and case 2. Casel has few spikes, which are due to the top-
ology of the network. As the network size increases, the
nodes tend to get closer to each other so the maximum dis-
tance that the leader needs to be propagated is greatly re~
duced, which reduces time. For case 2, only single message
has to be sent from the neighbor with which it meets first.
So time taken for the whole network is very small. In both
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cases, only one leader is elected after the propagation is
done.

(Figure 3) shows the time comparison between case 1
and case 3. Case 1 takes more time than case 3, and the
spikes seen in the graphs correspond to the incréase in net-
work size. The reason for case 1 taking more time is that
when a network of 3 nodes is considered, it becomes a net-
work of 4 nodes in case 1 and network of 2 nodes in case
3. In case 1, the spikes are due to the increase in network
size because of which the time to elect a leader gets
reduced. In case 3, the network increase in the size but
when compared with the previous network size the time
taken will be reduced in some cases where the nodes come
more close to each other. Finally from the graphs it can
be seen that in each case a unique leader has been identified
and elected in all cases.
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5. Conclusions

In this paper an efficient leader election algorithm for mo-
bile ad hoc networks is introduced along with the result
of performance evaluation. The algorithm is easy to imple-
ment as the messages are exchanged only between the
neighbors. The algorithm has used the concept of time
stamping to distinguish the messages so that the most re-
cent information is taken into consideration. All cases are
considered in the algorithms and show that only one leader
is elected at a particular time.

Also, we developed a simulation model for performance
evaluation of the algorithm. The simulation result shows

that the leader gets elected in every network under consid-
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eration and as the network size increases, the leader elec-
tion time is reduced because as the network size increases
then the mobile nodes come physically close and the net-

work diameter reduces.
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