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Abstract 
In real time applications, due to their effective cost and small size, wireless networks play an important role in 
receiving particular data and transmitting it to a base station for analysis, a process that can be easily deployed. 
Due to various internal and external factors, networks can change dynamically, which impacts the localisation 
of nodes, delays, routing mechanisms, geographical coverage, cross-layer design, the quality of links, fault 
detection, and quality of service, among others. Conventional methods were programmed, for static networks 
which made it difficult for networks to respond dynamically. Here, machine learning strategies can be applied 
for dynamic networks effecting self-learning and developing tools to react quickly and efficiently, with less 
human intervention and reprogramming. In this paper, we present a wireless networks survey based on 
different machine learning algorithms and network lifetime parameters, and include the advantages and 
drawbacks of such a system. Furthermore, we present learning algorithms and techniques for congestion, 
synchronisation, energy harvesting, and for scheduling mobile sinks. Finally, we present a statistical evaluation 
of the survey, the motive for choosing specific techniques to deal with wireless network problems, and a brief 
discussion on the challenges inherent in this area of research. 
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1. Introduction 

In some applications, a large number of intermediate nodes are present, and managing them requires 
efficient and scalable algorithms. Due to external factors, networks can change dynamically, which causes 
the localisation of nodes, delays, routing mechanisms, geographical coverage, cross layer designing, 
quality of link, fault detection, and quality of service, among others. Applying machine learning according 
to recent advances in technology has solved many challenges to improve network performance, and 
requiring less human intervention and programming. Recent advancements in technology and 
applications are important for effecting integration between physical systems, the Internet of Things, 
machine to machine cooperation, cloud to meet the requirements of user. 

The following are examples of the application of machine learning. (1) Deciding the optimum number 
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of nodes required to overcome target area coverage problems. (2) Forecasting the quantity of energy 
consumed within a given time period, for long-life and self-powered systems to overcome the energy 
harvesting problem. (3) Machine learning algorithms that can rapidly and efficiently establish accurate 
localisation of nodes to overcome the dynamic nature of network organisation due to external or internal 
factors. (4) Accumulating to the cloud gaming in multiplayer cooperative scenario to overcome the 
synchronising of data with respect to their cloud data. (5) Improving efficiency by overcoming the 
differentiating problem between the fault and normal nodes in a network. (6) Enhancing network lifetime 
and system performance through dynamic routing strategies to overcome the dynamic behaviour of 
networks. (7) The dimensionality of data can be lowered to overcome overheads incurred by transmitting 
complete data at a base station or to the cluster heads in a cluster. 

We organize the survey paper as follows. In Section 1 introduction to machine learning algorithms to 
wireless networks and cloud is presented. In Section 2 background of different types of machine learning 
techniques are discussed. In Section 3 different applications and their issues in networks with machine 
learning techniques are surveyed. In section 4 limitations and statistical analysis are explained. In Section 
5 open challenges for research in machine learning based networks and cloud are presented. Finally, the 
conclusions are drawn for the survey in Section 6. 

 
 

2. Machine Learning Techniques 

2.1 Supervised Learning 
 

Supervised learning is an important data processing technique in the field of machine learning. When 
training a system, it provides a set of inputs and outputs, i.e., a data set with labels, and establishes a link 
between them. This learning algorithm provides dependency links and relationships among inputs, and 
foresees outputs. Table 1 shows comparison of various machine learning techniques with different 
parameters. 

 
2.2 Unsupervised Learning 
 

The unsupervised learning technique is used for classifying data into similar patterns, reducing the size 
of data, forming clusters, and anomaly detection. It is associated with given inputs and as such, it involves 
no unlabelled output. This approach solves challenges related to connectivity problems, routing, data 
aggregation, and anomaly detection. It is divided into dimensionality reduction, such as singular value 
decomposition, independent component analysis, principle component analysis, and clustering, e.g., 
fuzzy c-means, k-means, and hierarchical. Table 2 depicts comparisons of various clustering algorithms. 

 
2.3 Semi-Supervised Learning 
 

Semi-supervised learning works on both supervised (labelled) and unsupervised (unlabelled) data. In 
real world applications based on semi-supervised learning, classification is performed partially on labelled 
data, and regression on unlabelled data. The important factor is to predict whether data is labelled or 
unlabelled in training datasets and future datasets. In video surveillance, speech recognition, classifying 
web content, natural language processing, protein sequence classification, and spam filtering applications, 
and to solve fault detection and localisation in wireless networks, this learning technique is employed. 
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Table 1. Comparison of various machine learning techniques with different parameters 

Specification type 
Decision 

tree 
Reinforcement 

learning 
ANN 

Deep 
learning 

SVM Bayesian K-NN 

Parameter 
handling Very good Very good Poor Good Poor Best Very good 

Speed of learning Very good Good Poor Poor Poor Best Best 
Accuracy Good Good Very good Very good Best Poor Good 
Speed of 

classification 
Best Best Best Best Best Best Poor 

Missing values 
handling Very good Good Best Good Good Best Good 

Redundant 
variables 
handling 

Good Good Good Good Very good Poor Good 

Noise handling Good Very good Good Very good Good Very good Poor 
Independent 

variables 
handling 

Good Good Very good Very good Very good Poor Poor 

Irrelevant variables 
handling Very good Very good Poor Good Best Good Good 

Dealing over 
fitting 

Good Good Poor Poor Good Very good Very good 

 
Table 2. Comparisons of various clustering algorithms 

Specification type K-means clustering Fuzzy c-means clustering Hierarchical clustering 
Clustering speed Fast Slow Fast 
Accuracy Low High High 
Accuracy of prediction High Low Low 
Quality High Moderate Moderate 
Sensitivity High Low Low 
Randomness in results Moderate Moderate Good 
Performance High Moderate Moderate 
 

2.4 Reinforcement Learning 
 

Reinforcement learning gathers data by continuously interacting with surrounding data and 
performing all necessary actions by drawing conclusions thereby improving performance of system by 
obtaining optimal results. Q-learning is a type of reinforcement learning that generates observation 
sequences as state-action-rewards. Based on behaviour, e.g., assertive, aggressive, passive-aggressive, and 
passive, reinforcement learning can be categorised as negative, positive, extinction, and punishment 
types.  Visualization of reinforcement learning is depicted in Fig. 1. 

 

 
Fig. 1. Reinforcement learning visualization. 
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2.5 Evolutionary Computation 
 

Evolutionary computation is an artificial intelligence sub-category that uses several optimisation 
techniques for computation that are inspired by biological evolution and nature, where a solution is 
obtained using several iterations. To obtain optimal results, evolutionary computation rejects less fitting 
solutions in iterations according to a trial and error process. This includes ant colony optimisation, 
genetic programming, genetic algorithms, evolutionary programming, evolutionary algorithms, artificial 
immune systems, artificial bee colonies, particle swarm optimisation, and firefly algorithms. This method 
is used to solve coverage, localisation, target tracking, routing, and mobile sink issues in wireless 
networks. 

 
 

3. Wireless Networks – Machine Learning Algorithms 

In this section, machine learning techniques for coping with challenges in wireless networks are 
discussed, as well as their advantages, alongside existing approaches depicted in their respective tabular 
forms. 

 
3.1 Localization 
 

Recognising the geographical, physical location of a wireless node manually, or by a global positioning 
system by sending beacon or anchor nodes, is known as localisation. This can be based on proximity, 
distance and angle, range, or location of nodes Continuous configuring and programming is needed for 
a dynamically changing network, where machine learning techniques must be applied to improve the 
accuracy of pinpointing location. This presents various advantages, e.g., anchor and unknown nodes can 
easily be found using machine learning algorithms in a network, to create clusters, and training them 
separately. Table 3 draws machine learning based approaches for localization in wireless networks. 

 
Table 3. Machine learning based approaches for localization 

Machine learning 
mechanism 

Complexity
Mobility of 

nodes 
Network Contributions Ref. 

K-means & fuzzy c-means High Static Centralized Accuracy is improved [1] 

Principle component analysis Moderate Static Distributed Outlier detection [2] 

Regression Moderate Static Distributed Accuracy is improved [3] 

ANN Low Static Distributed Error rate is reduced [4] 

 Moderate Static Centralized Accuracy is improved [5] 

Fuzzy logic Low Static Distributed Time complexity is reduced [6] 

 High Mobile Centralized Accuracy is improved [7] 

SVM High Static Distributed Accuracy is improved [8] 

 Moderate Static Centralized Accuracy is improved [9] 

Bayesian Moderate Static Centralized Improved energy efficiency [10] 

 Low Static Centralized Time complexity is reduced [11] 

 High Static Distributed Accuracy is improved [12] 
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3.2 Connectivity and Coverage 
 

‘Connectivity’ indicates each and every node that sends information to a receiver through relays or 
directly, and includes no isolated nodes. ‘Coverage’ indicates monitoring and all effectively deployed area 
nodes. Random deployment of nodes is feasible when compared to deterministic deployment. Full 
coverage and partial coverage are types of coverage. Sweep, barrier, target, and focused are further 
classifications of partial coverage. The advantages of connectivity and coverage include coverage of the 
target location by an optimal number of nodes quickly and dynamically, without any lost information; 
additionally, dynamically changing paths either in connected or disconnected networks is also possible. 
Table 4 illustrates machine learning techniques for connectivity and coverage. 

 
Table 4. Machine learning techniques for connectivity and coverage 

Machine learning 
mechanism Complexity Connectivity 

or coverage Network Mobility of 
nodes Contribution Ref. 

Regression 
 

Low 
 

Connectivity 
 

Centralized
 

Static 
 

Reliability and quality of 
network is optimized 

[13] 

SVM Moderate Connectivity Distributed Static Efficiency is improved [14] 
Random forest Moderate Coverage Distributed Static Accuracy is improved [15] 
Bayesian 
 

Moderate 
 

Coverage 
 

Distributed
 

Static 
 

Time complexity is 
reduced 

[16] 

k-means & fuzzy c-means Low Connectivity Distributed Static Workload is reduced [17] 
Reinforcement learning 
 

Low 
 

Coverage 
 

Distributed
 

Static 
 

Network lifetime is 
improved 

[18] 

 
Moderate 

 
Connectivity 

 
Centralized

 
Static or 
mobile 

Network lifetime is 
improved 

[19] 

 
3.3 Anomaly Detection 
 

Anomaly detection refers to an inconsistent and significant fluctuation that can appear when 
measuring data readings. For example, traffic monitoring in an application produces data and transmits 
it through relay nodes, where readings are continuously changing; data can sometimes also be lost, and 
as such, it must be protected by detecting data attacks. Using machine learning techniques, anomaly 
detection can be improved. The advantages of clustering algorithms include lowering overhead; bypass 
the complexity of hybrid attacks by detecting affected nodes and the type of anomaly. To manage attacks 
and faults in dynamic network environments, machine learning techniques are used which overcomes 
the problem of anomaly by considering history and modifying data parameters accordingly.  Table 5 
shows machine learning based anomaly detection techniques. 

 
3.4 Fault Detection 
 

Faults can include battery failure, communication issues, hardware failure, software failure, topological 
changes, and an inefficient base station. Detecting faults caused by deployment changes, resource 
limitations, accuracy between faulty and normal nodes, and type of surroundings represents complex 
obstacles. Applying machine learning approaches to detect faults delivers benefits such as the 
categorisation of faults and enhanced accuracy. Table 6 shows fault detection techniques using machine 
learning. 
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Table 5. Machine learning based anomaly detection techniques 
Machine learning 

mechanism 
Complexity Anomaly Network Contributions Ref. 

K-NN Low Cyber-attacks, Random faults Distributed Time complexity is reduced [20] 
Decision tree Moderate Sinkhole problem Centralized Accuracy is improved [21] 
SVM High Detected anomaly Centralized Time complexity is reduced [22] 
 High Detected intrusion Centralized Accuracy is improved [23] 
Bayesian Moderate Detected outlier Distributed Accuracy is improved [24] 
 High Trust management issue Distributed Accuracy is improved [25] 
K-means Moderate Hybrid anomaly Centralized Accuracy is improved [26] 
Q-learning High Denial of service attack Distributed Network lifetime is improved [27] 
Regression Moderate Detected anomaly Centralized Accuracy is improved [28] 
Deep learning High Detected intrusion Centralized Accuracy is improved [29] 

 

Table 6. Fault detection techniques using machine learning 
Machine learning mechanism Complexity Accuracy (%) Diagnosing faults Ref. 

SVM Low 99 Negative alerts [30] 
 High 98 Faulty nodes [31] 
Bayesian Moderate 30 Body sensors [32] 
 High 100 Faulty nodes [33] 
 Moderate 98 Faulty nodes [34] 
ANN High 98 Faulty sensors [35] 
K-NN Moderate 99 Faulty nodes [36] 
Semi-supervised learning Moderate 99 Detected faulty node [37] 
Deep learning High 99 Faulty data [38] 

 
3.5 Routing 
 

Transmission bandwidth, processing capacity, memory, and power affect routing in a network. The 
purpose of efficient routing is to find the best optimal route that consumes the least resources in terms of 
power, while providing an increased lifetime. The nodes near to a base station act as relay nodes that 
consume more power, which presents an issue for lifetime of a network. Employing machine learning 
techniques for wireless networks has particular benefits; for example, changes in surroundings can be 
adopted via machine learning without the need for reprogramming, while selecting optimum cluster 
heads in routing can minimise communication overheads. Additionally, by employing machine learning 
in applications, optimum paths can be found and latency reduced. Table 7 depicts machine learning based 
routing protocols. 

 
3.6 Congestion Control 
 

Congestion control is affected when data transmission is above the capacity of a communication 
channel, which can arise when sending data in several rather than one pattern, causing buffer overflows, 
packet collisions, contention within the transmission channel, and dynamically varying time in obtaining 
the packet. Congestion affects packet delivery ratio, quality of service, end-to-end latency, and energy 
consumption. Employing machine learning techniques for congestion control has advantages, as end-to-
end delay can be minimised by finding an optimal path, and traffic can be estimated by accurately using 
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machine learning algorithms. Table 8 illustrates congestion control strategies using machine learning 
techniques. 

 
Table 7. Machine learning based routing protocols 

Machine learning mechanism Complexity
Quality of 

service 
Network 

Mobility of 
nodes 

Topology Ref. 

ANN High No Centralized Static Tree [39] 
 Moderate Yes Distributed Static Tree [40] 
 Moderate No Distributed Mobile Tree [41] 
Deep learning High No Centralized Mobile Hybrid [42] 
SVM Moderate No Distributed Static Hybrid [43] 
Bayesian Moderate No Distributed Static Tree [44] 
 Low No Centralized Static Hybrid [45] 
 Moderate No Centralized and decentralized Mobile Hybrid [46] 
K-means Low Yes Distributed Static Hybrid [47] 
 Moderate No Distributed Static Tree [48] 
 Moderate No Centralized Static Hybrid [49] 
Singular value decomposition Moderate No Distributed Static Arbitrary [50] 

 
Table 8. Congestion control strategies using machine learning techniques 
Machine learning mechanism Parameters considered Flow of data Flow of control Contributions Ref. 
ANN 
 

Consumption of energy & end-
to-end delay 

Continuous
 

Hop by hop 
 

Controlled traffic 
 

[51] 
 

Fuzzy logic 
 

Packet loss ratio 
 

Continuous
 

Hop by hop 
 

Managing queue 
length 

[52] 
 

SVM 
 

Consumption of energy, 
throughput & latency 

Continuous
 

Hop by hop 
 

Controlled rate of 
transmission 

[53] 
 

Reinforcement learning Energy efficiency & throughput Continuous Hop by hop Controlled traffic [54] 

 
3.7 Medium Access Control 
 

Medium access control forms a data link sub-layer used in addressing channel allocation, recognising 
frames, and transferring data from upper layers in a network. The lifetime of a network can be enhanced 
through energy efficient protocols, which is critical in terms of network dynamic nature and removing 
noise in data. Medium access control can be schedule-based (communication among nodes, required in 
particular slots of time), or contention-based (central communication not required). Machine learning 
techniques for medium access control has advantages that include avoiding latency, reducing energy 
consumption, reducing extra efforts to reconstruct the network by adding nodes or removing dead nodes, 
minimising end-to-end delay, and enhancing the efficiency of self-learning in the network. Table 9 shows 
Machine learning based medium access control designs for wireless networks. 

 
Table 9. Machine learning based medium access control (MAC) designs 

Machine learning mechanism Complexity MAC type Category Synchronization Ref. 
Reinforcement learning High Hybrid Contention Yes [55] 
 Moderate Hybrid Schedule Yes [56] 
 Low ALOHA Contention Yes [57] 
  CSMA Schedule Yes [58] 
Random forest Low Hybrid Contention No [59] 
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3.8 Data Aggregation 
 

Data aggregation combines and collects data from nodes affected by memory, power, and 
computational and communication overheads. Efficient mechanisms of data aggregation enhance the 
lifetime of networks and balance energy utilisation. Tree-based, cluster-based, centralised, and in-
network are types of data aggregation. Efficient cluster heads selection is effected by machine learning to 
balance energy consumption at nodes; furthermore, using machine learning techniques, for data 
aggregation adapts to dynamic environments without the need for reprogramming or reconfiguring, can 
reduce the dimensionality of data, thereby lowering overheads in communication at cluster heads or 
nodes, and in this way reduce transmission delay. Table 10 depicts the advantages of using machine 
learning techniques in data aggregation for wireless networks. 

 
Table 10. Advantages of using machine learning techniques in data aggregation 

Machine learning 
mechanism Complexity Network Topology Mobility of 

nodes Improvement Ref. 

Regression Low Distributed Tree Static Network lifetime  [60] 
K-NN Moderate Distributed Hybrid Static Network lifetime  [61] 

Decision tree Moderate Distributed Tree Static Accuracy  [62] 
Low Distributed Tree Static Network lifetime  [63] 

ANN High Centralized Hybrid Static Accuracy  [64] 
Bayesian Moderate Distributed Hybrid Static or mobile Accuracy  [65] 
 Low Centralized Hybrid Static Time complexity  [66] 
 Moderate Centralized Tree Static Accuracy  [67] 
K-means Moderate Distributed Tree Static Eliminated redundancy  [68] 

Hierarchical clustering Moderate Centralized or 
distributed Hierarchical Static Transmissions reduced [69] 

Principle component analysis Low Distributed Tree Static Network lifetime  [70] 
 High Distributed Tree Static Network lifetime  [71] 
 Moderate Distributed Hybrid Static Network lifetime  [72]  

Singular value decomposition High Centralized Hybrid Static Unnecessary transmissions
reduced 

[73] 

Genetic classifier Moderate Distributed Star Static or mobile Network lifetime  [74] 

 
3.9 Target Tracking 
 

Target tracking is the monitoring and detecting of dynamic or static phenomena in a network, obtained 
by tracking a target via multiple nodes, thereby obtaining accurate results for single nodes is difficult. 
Target tracking includes a number of issues, such as missing targets, tracking latency, node failure, data 
aggregation, energy consumption, connectivity and coverage, which can be solved by divide and conquer 
techniques or estimations by prior comparative studies. Benefits include reduced overheads in tracking 
any mobile or stationary target, and for dynamic networks, machine learning algorithms can improve 
efficiency. Table 11 illustrates algorithms for node or target tracking by machine learning. 

 
3.10 Quality of Service 
 

Quality of service is the level of service provided by a network. This may relate to a specific application, 
e.g., active nodes, measurements of nodes, and deployment or network-specific aspects, e.g., bandwidth 
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or rate of energy utilisation. It is impacted on by unbalanced traffic, dynamic networks, data redundancy, 
resource constraints, scalability, energy balancing, and variations in traffic type. Table 12 depicts machine 
learning approaches towards quality of service in wireless networks. 

 
Table 11. Algorithms for node or target tracking by machine learning 

Machine learning 
mechanism 

Mobility of 
target 

Number of 
targets 

Mobility of 
sensor 

Number of 
sensors Contributions Ref. 

Bayesian & reinforcement 
learning 

Static 
 

Single 
 

Static or 
mobile 

Multiple 
 

Network lifetime is improved 
 

[75] 
 

Principle component 
analysis 

Static 
 

Single 
 

Static 
 

Multiple 
 

Network lifetime is improved 
 

[76] 
 

Q learning Static Single Static Multiple Task scheduling is efficient [77] 
Genetic algorithm Static Single Static Multiple Network lifetime is improved [78] 
Memetic algorithm Static Single Static Multiple Network lifetime is improved [74] 
Bayesian Static Single Static Single Accuracy is improved [79] 

 Mobile Single Mobile Single Accuracy is improved [80] 

 
Static 

 
Single 

 
Static 

 
Multiple 

 
Communication overhead is 

reduced 
[81] 

 

 
Static 

 
Multiple 

 
Static 

 
Single or 
multiple 

Network lifetime is improved 
 

[82] 
 

 

Table 12. Machine learning approaches towards quality of service 
Machine learning mechanism Complexity Contributions Ref. 

ANN Moderate Detected fault nodes [35] 
 Moderate Balancing energy [83] 
 Low Estimated link quality [84] 
Reinforcement learning Moderate Communication framework for cross layers [85] 

 Low Protocol for data dissemination & controlled topology  [86] 
 High Satisfied constraint service composition [87] 
 Moderate Cooperative distributed adaptive routing [88] 

 
3.11 Synchronization 
 

Synchronisation is used for power management, data aggregation, sleep scheduling, localisation, 
transmission scheduling, target tracking, and security by the protocol designs of these respective 
functions. One way, two-way, and receiver synchronisation are the classifications for types in this regard. 
Common time frames may be different for nodes within a network. 

Capriglione et al. [89] consider noise, clock frequency, clock drift, and latency by regression technique 
for synchronisation in low-cost networks. The authors [90] propose linear regression for extended time 
synchronisation in dynamic, clock drift networks, which employ automatic resynchronisation, thereby 
reducing error and enhancing accuracy of networks. Betta et al. [91] consider clock resolution, drift, and 
jitter by using regression techniques in applications, thus enhancing synchronisation performance. 

 
3.12 Event Detection 
 

Event detection is the process of detecting misbehaving events in data when monitoring data 
continuously and making decisions about events. Requirements include a lower false alarm rate, limited 
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power and computational resources, synchronisation and detection rates that are highly accurate (which 
are affected by memory). Using machine learning techniques in event detection has advantages such as 
being able to detect events from complex data, and achieving effective duty cycles by enhancing packet 
delivery ratio. 

Illiano and Lupu [92] focus on enhancing accuracy by regression using the KNN method to effectively 
extract required data from raw data provided by nodes. Li et al. [93] propose query processing using the 
KNN method to extract the necessary information from stored information, thus reducing processing 
time for queries and balancing energy consumption. Han et al. [94] introduce fuzzy logic and rule-based 
approaches in event detection, by collecting neighbour nodes’ information, thereby improving accuracy 
and speed. 

 
3.13 Mobile Sink 
 

A mobile sink gathers data from each node by visiting them directly, rather than gathering data from 
node to base station in multiple hops. However, in large networks, it is difficult for a mobile sink to visit 
each node in a rapid manner. This can be solved by introducing rendezvous points, where the mobile 
sink visits some nodes to gather data, while the remaining nodes transmit data to the nearest rendezvous 
points. To avoid delay, multiple rendezvous points can be used, but this increases network cost. Using 
machine learning approaches for mobile sinks has advantages, including obtaining an optimum number 
of rendezvous points or cluster heads, assisting in gathering data effectively, determining and selecting 
an optimal path by delay-aware mobile sink routing. 

Wang et al. [95] introduced concepts for mobile sink and store the gathered data in cloud where every 
mobile sink is considered as fog device that can be a bridge between cloud and wireless networks. It 
collects data in parallel thus reducing delay, energy and improving scheduling, lifetime. Tashtarian et al. 
[96] proposed scheduling by selecting rendezvous points by optimal deadline trajectory techniques and 
virtual structures by decision trees. The authors [97] presented naive Bayes classifier for gathering data 
by mobile sink effectively than conventional approaches. 

 
Table 13. Machine learning based techniques for energy harvesting 

Machine learning mechanism Complexity Source of energy Network Ref. 
Reinforcement learning Low  Solar energy Centralized [77] 
Deep learning High Solar energy Centralized [78] 
Hierarchical clustering Low  Solar or wind energy Distributed [98] 
Regression High Solar energy Centralized [99] 

 High Solar energy 
Centralized or 

distributed [100] 

 
3.14 Energy Harvesting 
 

The lifetime of a network depends on the energy utilised by nodes in a network, where battery is the 
source of energy. Using energy harvesting techniques such as sleep scheduling, routing, a mobile charger, 
mobile sink, or employing efficient protocols, can prolong the lifetime of network to several years. Energy 
harvesting is affected by unreachable nodes, additional maintenance, and large computational resources, 
but long-lasting, self-powered, and maintenance free. Energy sourced from wind, radio frequencies, 
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thermal sources, solar energy, vibration, as well as mechanical energy, are used for network energy 
harvesting. Harvesting can be done without storage or backup sources, and with a stored or powered, 
rechargeable battery. Using machine learning techniques for energy harvesting has several advantages, 
e.g., the amount of energy harvested within a given time can be estimated, thereby improving network 
performance. Table 13 depicts machine learning based techniques for energy harvesting. 

 
Table 14. Machine learning algorithms to solve various challenges in wireless networks 

Issues in wireless networks Machine learning mechanism Contributions 
Localization Reinforcement learning It works for dynamic changes in network without 

any initial knowledge 
K-NN Estimated distance efficiently in free range network 

localization 
Connectivity & coverage Decision tree Classification for isolated and connected network 

nodes performed efficiently 
Deep learning & evolutionary 

computation 
Optimal connectivity & Coverage can be done with 

minimum nodes 
Fault and anomaly detection Random forest Classifying normal and fault nodes 

Principle component analysis Anomaly is detected
Independent component analysis Anomaly is detected 
Deep learning Detected faults & Online anomaly 

Routing Decision tree, random forest & 
evolutionary computation 

Routing optimally  is predicted for controlling data 
by alternate dynamic paths 

Medium access control SVM Assigned channels efficiently 
Decision tree Assigned channels efficiently 
Deep learning Predicted slots in time & reconfigure to dynamic 

network automatically 
Data aggregation K-means Optimum number of cluster heads are found 

SVM Optimum number of cluster heads are found 
Reinforcement learning Routing paths are selected optimally without any 

initial knowledge 
Congestion control Reinforcement learning Congestion is determined & alternate paths are 

found 
Random forest, decision tree & SVM In large scale wireless networks, normal and 

congestion nodes classification is performed 
Evolutionary computation Avoided congestion by selecting  alternative 

dynamic optimal path  
Principle & independent component 

analysis 
Unnecessary information sending is controlled by 

reducing dimensionality 
Target tracking Deep learning Tracking targets in multiple mobile networks 

efficiently 
SVM Targets classification in heterogeneous networks 
Decision tree Targets classification in heterogeneous networks 

Event Detection Principle & independent component 
analysis 

Event detection from complex data 

Evolutionary computation  Duty cycles are managed effectively 
Deep learning Duty cycles are managed effectively 

Mobile Sink Evolutionary computation Selecting best path between rendezvous points or 
sensor nodes from mobile sink 

Reinforcement learning Selecting optimal tour & rendezvous points 
Random forest Forwarding routes for data & selecting rendezvous 

points optimally in large scale networks 
Energy harvesting SVM Energy harvested in a particular time is estimated 

Deep learning Energy harvested in a particular time is estimated 
Evolutionary computation Energy harvested amount is estimated 

Synchronization  Deep learning Allocating channels & dynamical resynchronization  
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4. Statistical Analysis and Limitations 

4.1 Statistical Analysis 
 

In this section recent research overview on machine learning algorithms are presented. Table 14 
illustrates machine learning algorithms to solve various challenges in wireless networks. 

 

 
Fig. 2. Statistical charts for issues. 

 

 
Fig. 3. Research papers published year wise. 

 

 
Fig. 4. Classification based on learning technique. 
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Figs. 2 and 3 shows wireless networks issues where many researchers are interested. Fig. 4 estimates 
percentage of issues solved by machine learning techniques by its classification. Fig. 5 estimates 
percentage of issues solved by machine learning algorithms. 

 

 
Fig. 5. Issues solved by machine learning based algorithms. 

 
4.2 Limitations 
 

Despite its advantages, applying machine learning algorithms has some limitations. (1) Predicting 
accurate results immediately is not possible, as learning from history is required for machine learning 
algorithms. (2) Historical data amounts determine performance, but the consumption of energy is high 
if large amounts of data require processing. There is thus a trade-off between computational overheads 
and energy consumption, but this can be solved by running machine learning algorithms centrally. (3) It 
is difficult to draw predictions from algorithms that require validation in real world applications. (4) 
Identifying an efficient machine learning technique to address a particular challenge can at times be 
difficult. 

 
 

5. Open Challenges 

In this section we will provide open challenges in wireless networks which need further research to 
solve those challenges by employing effective machine learning techniques. Defining standards and 
designing cross layer protocols for quality of service in heterogeneous networks with different 
requirements is difficult and challenging task where further research to be done to standardize the quality 
of service. Table 15 shows the key issues need to be addressed in wireless networks. 

- Localisation: It is initially important to find an optimal path via beacon nodes within a network, but 
to our knowledge, there is no predefined strategy for planning a path in a network. We explored machine 
learning in two-dimensional space for localisation accuracy, with less energy utilisation; however, 
localisation in three-dimensional space for dynamic and static networks need to be conducted, which is 
necessary in most applications in real time. 

- Connectivity and coverage: To cover the target area using a lower number of nodes, and placing 
them effectively, is a challenging task. Random deployment of nodes in real-time applications leads to the 
coverage hole problem in dynamic environments. In this situation, finding accurate solutions in three-
dimensional spaces, and providing suitable algorithms with lower computational overheads, requires 
further research. 
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- Anomaly detection: Many researchers have proposed various techniques for detecting anomalies that 
affect transmission delay, communication overheads, and misleading data. However, future research is 
required to overcome the anomaly once it has been detected in order to lower damages of network. Speed 
and accuracy in detecting and selecting anomaly techniques remains an open challenge that needs to be 
improved for heterogeneous networks. 

- Routing: Transmitting data packets from sender to receiver in one-to-one communication is easy, 
but many-to-many is difficult due to packet collisions, which remains an ongoing issue for further 
research aimed at overcoming collisions. Implementing effective protocols for dynamic network changes 
that occur due to external factors is required. 

- Data aggregation: This is a simple procedure for uniform data rates, but for non-uniform data rates, 
further research is needed to reduce complexity. Using a mobile sink can enhance energy efficiency; 
however, scheduling a mobile sink is a challenging issue for non-uniform data rates. Scalability, energy 
efficiency, and lower costs are factors that need to be considered for data aggregation. 

- Congestion control and avoidance: Data loss, as well as internal and external factors, lead to 
congestion in dynamic networks, where implementing congestion control techniques are needed to lower 
data transmission rates. Efficient, fast, effective strategies are needed, alongside self-learning within 
dynamic networks to remove or add nodes accordingly when congestion arises. Estimating traffic rates 
in fast dynamic networks via efficient protocols remains an ongoing research issue, as does collecting 
data, in addition to sending it among nodes to be determined. 

- Energy harvesting: To enhance the lifetime of wireless energy harvesting systems with limited power, 
lower costs and high efficiency is required for synchronisation between cross layers, i.e., medium access 
control and physical layers. Machine learning strategies for improving reliability in large-scale networks 
that adapt to dynamic changes via self-charging and discharging duty cycles is an additional research 
direction of interest. 

- Quality of service: Quality of service is required to meet the needs of applications and users in 
determining data rates, and for handling traffic, costs of network, energy consumption. 

 

Table 15. Key issues need to be addressed in wireless networks 
Challenges in wireless networks Key issues need to be addressed 
Localization 
 

Localization in real time applications with three dimensional spaces for dynamic and 
static networks needs to be performed.  

Connectivity and coverage 
 

Deployment of nodes in three dimensional spaces with less computational overheads in 
real time applications needs to be performed. 

Anomaly detection 
 

Speed and accuracy in detecting and selecting anomaly techniques is a key issue which 
needs to be improved for heterogeneous networks. 

Routing 
 

 Implementing effective protocols and reducing packet collisions for dynamic network 
changes caused by external factors is a key issue which needs to be determined. 

Data aggregation 
 

Data aggregation is complex for non-uniform data rates where further research to be 
done to reduce complexities. 

Congestion control and 
avoidance 
 

To estimate traffic rates in fast dynamic network by efficient protocols as well as 
collecting data apart from sending data among nodes to be determined to control 
and avoid congestion. 

Energy harvesting 
 
 

Machine learning strategies to improve reliability in large scale networks that adapts to 
dynamic changes by self-charging and discharging duty cycles is a key issue which 
needs to be performed. 

Quality of service 
 
 

Defining standards and designing cross layer protocols in heterogeneous networks with 
different requirements is difficult, further research to be done to standardize the 
quality of service. 
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6. Conclusion  

Several machine learning techniques for wireless networks were discussed in this survey. We addressed 
various factors such as fault detection, localisation, anomaly detection, data aggregation, routing, 
synchronisation, medium access control protocols, selecting a mobile sink path, energy harvesting, 
quality of service, and congestion control, all of which can be addressed by employing machine learning 
techniques. Additionally, we compared and produced statistical reports of various machine learning 
techniques’ impact on wireless networks. In this survey, we suggest selecting a particular machine- 
learning technique to address a challenge in wireless networks. Finally, ongoing issues for further research 
in future were presented. 
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