• Title/Summary/Keyword: Wireless localization

Search Result 296, Processing Time 0.023 seconds

Localization Algorithm in Wireless Sensor Networks using the Acceleration sensor (가속도 센서를 이용한 무선 센서 네트워크하에서의 위치 인식 알고리즘)

  • Hong, Sung-Hwa;Jung, Suk-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1294-1300
    • /
    • 2010
  • In an environment where all nodes move, the sensor node receives anchor node's position information within communication radius and modifies the received anchor node's position information by one's traveled distance and direction in saving in one's memory, where if there at least 3, one's position is determined by performing localization through trilateration. The proposed localization mechanisms have been simulated in the Matlab. In an environment where certain distance is maintained and nodes move towards the same direction, the probability for the sensor node to meet at least 3 anchor nodes with absolute coordinates within 1 hub range is remote. Even if the sensor node has estimated its position with at least 3 beacon information, the angle ${\theta}$ error of accelerator and digital compass will continuously apply by the passage of time in enlarging the error tolerance and its estimated position not being relied. Dead reckoning technology is used as a supplementary position tracking navigation technology in places where GPS doesn't operate, where one's position can be estimated by knowing the distance and direction the node has traveled with acceleration sensor and digital compass. The localization algorithm to be explained is a localization technique that uses Dead reckoning where all nodes are loaded with omnidirectional antenna, and assumes that one's traveling distance and direction can be known with accelerator and digital compass. The simulation results show that our scheme performed better than other mechanisms (e.g. MCL, DV-distance).

A Study on Implementation of Zigbee Module based on CC520 (CC2520 기반의 지그비 모듈 구현에 대한 연구)

  • Moon, Yong-Seon;Bae, Young-Chul;Roh, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.664-671
    • /
    • 2010
  • In this paper, we developed a Zigbee module based on CC2520 which is possible to construct the mesh network and also support to Zigbee Pro standard as a preceding research of autonomous moving of mobile robot using Zigbee. After manufacturing the Zigbee module, we selected antenna to fit Zigbee wireless frequency band using network analyze as means performance improvement. We also carry out an impedance matching of Zigbee module, extend the possible distance of two-way wireless communication and ensure the safety of communication.

Identification of Wi-Fi and Bluetooth Signals at the Same Frequency using Software Defined Radio

  • Do, Van An;Rana, Biswarup;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.252-260
    • /
    • 2021
  • In this paper, a method of using Software Defined Radio (SDR) is proposed for improving the accuracy of identifying two kinds of signals as Wireless Fidelity (Wi-Fi) signal and Bluetooth signal at the same frequency band of 2.4 GHz based on the time-domain signal characteristic. An SDR device was set up for collecting transmitting signals from Wi-Fi access points (Wi-Fi) and mobile phones (Bluetooth). Different characteristics between Wi-Fi and Bluetooth signals were extracted from the measured result. The SDR device is programmed with a Wi-Fi and Bluetooth detection algorithm and a collision detection algorithm to detect and verify the Wi-Fi and Bluetooth signals based on collected IQ data. These methods are necessary for some applications like wireless communication optimization, Wi-Fi fingerprint localization, which helps to avoid interference and collision between two kinds of signals.

EEDARS: An Energy-Efficient Dual-Sink Algorithm with Role Switching Mechanism for Event-Driven Wireless Sensor Networks

  • Eslaminejad, Mohammadreza;Razak, Shukor Abd;Ismail, Abdul Samad Haji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2473-2492
    • /
    • 2012
  • Energy conservation is a vital issue in wireless sensor networks. Recently, employing mobile sinks for data gathering become a pervasive trend to deal with this problem. The sink can follow stochastic or pre-defined paths; however the controlled mobility pattern nowadays is taken more into consideration. In this method, the sink moves across the network autonomously and changes its position based on the energy factors. Although the sink mobility would reduce nodes' energy consumption and enhance the network lifetime, the overhead caused by topological changes could waste unnecessary power through the sensor field. In this paper, we proposed EEDARS, an energy-efficient dual-sink algorithm with role switching mechanism which utilizes both static and mobile sinks. The static sink is engaged to avoid any periodic flooding for sink localization, while the mobile sink adaptively moves towards the event region for data collection. Furthermore, a role switching mechanism is applied to the protocol in order to send the nearest sink to the recent event area, hence shorten the path. This algorithm could be employed in event-driven and multi-hop scenarios. Analytical model and extensive simulation results for EEDARS demonstrate a significant improvement on the network metrics especially the lifetime, the load and the end-to-end delay.

The Method of Reducing the Delay Latency to Improve the Efficiency of Power Consumption in Wireless Sensor Networks

  • Ho, Jang;Son, Jeong-Bong
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.199-204
    • /
    • 2008
  • Sensor nodes have various energy and computational constraints because of their inexpensive nature and ad-hoc method of deployment. Considerable research has been focused at overcoming these deficiencies through faster media accessing, more energy efficient routing, localization algorithms and system design. Our research attempts to provide a method of improvement MAC performance in these issues. We show that traditional carrier-sense multiple access(CSMA) protocols like IEEE 802.11 do not handle the first constraint adequately, and do not take advantage of the second property, leading to degraded latency and throughput as the network scales in size, We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is a randomized CSMA protocol, but unlike previous legacy protocols, does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, it carefully decides a fixed-size contention window, non-uniform probability distribution of transmitting in each slot within the window. We show that it can offer up to several times latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely used simulator ns-2. We, finally show that proposed MAC scheme comes close to meeting bounds on the best latency achievable by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to latency.

  • PDF

Implementation of a ZigBee-based High Performance Sensor Node for the Robot Environment Platform (로봇환경플랫폼을 위한 직비 기반의 고성능 센서노드 구현)

  • Kim, Kee-Min;Lee, Kyung-Jung;Kim, Jae-O;Moon, Chan-Woo;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.69-75
    • /
    • 2010
  • In this paper, a ZigBee-based wireless sensor network is configured for the robot to effectively communicate with the environment platform where sensor nodes are implemented using high performance microcontrollers. The localization and the navigation functions are also required to the robot which performs the given task using various types of sensor information. A new type of ZigBee stack is developed using the RUM(Router Under MAC) of the Atmel Corp. and it is applied to a 32-bit ARM core microcontroller for the high performance sensor data manipulation and transmission. It is verified by experiments that the wireless sensor network consisting of developed high performance sensor nodes can be effectively used for the robot environment platform.

Two Kinds of Hybrid Localization System Design Techniques Based on LED IT (LED IT 기반의 두 가지 하이브리드 측위 시스템 설계 기법)

  • Lee, Yong Up;Kang, Yeongsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.155-164
    • /
    • 2013
  • Two design techniques for more accurate and more convenient hybrid positioning system with visible light communication (VLC) and ad-hoc wireless network infrastructure are proposed, in order to overcome the problems of high estimation error, high cost, and limited service range of the conventional positioning techniques. First method is based on a non-carrier VLC based hybrid positioning technique for applications involving of low data rate optical sensing and narrow-range visible light reception from transmitter, and long-range positioning. The second method uses a 4 MHz carrier VLC-based hybrid positioning technique for a high data rate optical sensing and wide-range visible light receiving from transmitter, and mid-range positioning applications. In indoor environments with obstacles where there are long-range 7731.4cm and mid-range 2368cm distances between an observer and a target respectively, the hybrid positioning developed with two design techniques are tested, and the proposed system is verified and analyzed in this paper.

Performance Improvement Algorithm for Wireless Localization Based on RSSI at Indoor Environment (RSSI의 거리 추정 방식에 바탕을 둔 실내 무선 측위 성능 향상 알고리즘)

  • Park, Joo-Hyun;Lee, Jung-Kyu;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4C
    • /
    • pp.254-264
    • /
    • 2011
  • In this paper, we propose two algorithm for improving the performance of wireless localization(Trilateration and Least Square) based on the range based approach method in indoor environment using RSSI for ranging distance. we propose a method to discriminate the case that has relatively large estimation errors in trilateration using Heron''s formula for the volume of a tetrahedron. And we propose the algorithm to process the discriminated types of distance using the absolute value calculated by Heron''s formula. In addition, we propose another algorithm for the case of which the number of anchor nodes larger than three. In this case, Residual Weighting Factor(RWGH) improves the performance of Least Square. However, RWGH requires many number of calculations. In this paper, we propose Iterative Weighted Centroid Algorithm(IWCA) that has better performance and less calculation than RWGH. We show the improvement of performance for two algorithms and the combination of these algorithm by using simulation results.

Location Error Compensation in indoor environment by using MST-based Topology Control (MST 토폴로지를 이용한 실내 환경에서의 위치측정에러의 보상기법)

  • Jeon, Jong-Hyeok;Kwon, Young-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1926-1933
    • /
    • 2013
  • Many localization algorithms have been proposed for Wireless Sensor Networks (WSNs). The IEEE 802.15.4a-based location-aware-system can provide precise ranging distance between two mobile nodes. The mobile nodes can obtain their exact locations by using accurate ranging distances. However, the indoor environments contain various obstacles which cause non-line-of-sight (NLOS) conditions. In NLOS condition, the IEEE 802.15.4a-based location-aware system has a large scale location error. To solve the problem, we propose location error compensation in indoor environment by using MST-based topology control. Experimental and simulation results show that the proposed algorithm improves location accuracy in NLOS conditions.

A hybrid model of regional path loss of wireless signals through the wall

  • Xi, Guangyong;Lin, Shizhen;Zou, Dongyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3194-3210
    • /
    • 2022
  • Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.