• Title/Summary/Keyword: Wireless Sensor Networks (WSNs). Networks (WSNs)

Search Result 372, Processing Time 0.024 seconds

How Network Coding Benefits Converge-Cast in Wireless Sensor Networks

  • Tang, Zhenzhou;Wang, Hongyu;Hu, Qian;Hai, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1180-1197
    • /
    • 2013
  • Network coding is one of the most promising techniques to increase the reliability and reduce the energy consumption for wireless sensor networks (WSNs). However, most of the previous works mainly focus on the network coding for multicast or unicast in WSNs, in spite of the fact that the converge-cast is the most common communication style in WSNs. In this paper, we investigate, for the first time as far as we know, the feasibility of acquiring network coding benefits in converge-cast, and we present that with the ubiquitous convergent structures self-organized during converge-casting in the network, the reliability benefits can be obtained by applying linear network coding. We theoretically derive the network coding benefits obtained in a general convergent structure, and simulations are conducted to validate our theoretical analysis. The results reveal that the network coding can improve the network reliability considerably, and hence reduce number of retransmissions and improve energy-efficiency.

Improved DV-Hop Localization Algorithm Based on Bat Algorithm in Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie;Xu, Zhenfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.215-236
    • /
    • 2017
  • Obtaining accurate location information is important in practical applications of wireless sensor networks (WSNs). The distance vector hop (DV-Hop) is a frequently-used range-free localization algorithm in WSNs, but it has low localization accuracy. Moreover, despite various improvements to DV-Hop-based localization algorithms, maintaining a balance between high localization accuracy and good stability and convergence is still a challenge. To overcome these shortcomings, we proposed an improved DV-Hop localization algorithm based on the bat algorithm (IBDV-Hop) for WSNs. The IBDV-Hop algorithm incorporates optimization methods that enhance the accuracy of the average hop distance and fitness function. We also introduce a nonlinear dynamic inertial weight strategy to extend the global search scope and increase the local search accuracy. Moreover, we develop an updated solutions strategy that avoids premature convergence by the IBDV-Hop algorithm. Both theoretical analysis and simulation results show that the IBDV-Hop algorithm achieves higher localization accuracy than the original DV-Hop algorithm and other improved algorithms. The IBDV-Hop algorithm also exhibits good stability, search capability and convergence, and it requires little additional time complexity and energy consumption.

A New Cross-Layer QoS-Provisioning Architecture in Wireless Multimedia Sensor Networks

  • Sohn, Kyungho;Kim, Young Yong;Saxena, Navrati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5286-5306
    • /
    • 2016
  • Emerging applications in automation, medical imaging, traffic monitoring and surveillance need real-time data transmission over Wireless Sensor Networks (WSNs). Guaranteeing Quality of Service (QoS) for real-time traffic over WSNs creates new challenges. Rapid penetration of smart devices, standardization of Machine Type Communications (MTC) in next generation 5G wireless networks have added new dimensions in these challenges. In order to satisfy such precise QoS constraints, in this paper, we propose a new cross-layer QoS-provisioning strategy in Wireless Multimedia Sensor Networks (WMSNs). The network layer performs statistical estimation of sensory QoS parameters. Identifying QoS-routing problem with multiple objectives as NP-complete, it discovers near-optimal QoS-routes by using evolutionary genetic algorithms. Subsequently, the Medium Access Control (MAC) layer classifies the packets, automatically adapts the contention window, based on QoS requirements and transmits the data by using routing information obtained by the network layer. Performance analysis is carried out to get an estimate of the overall system. Through the simulation results, it is manifested that the proposed strategy is able to achieve better throughput and significant lower delay, at the expense of negligible energy consumption, in comparison to existing WMSN QoS protocols.

Fuzzy Logic Approach to Zone-Based Stable Cluster Head Election Protocol-Enhanced for Wireless Sensor Networks

  • Mary, S.A. Sahaaya Arul;Gnanadurai, Jasmine Beulah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1692-1711
    • /
    • 2016
  • Energy is a scarce resource in wireless sensor networks (WSNs). A variety of clustering protocols for WSNs, such as the zone-based stable election protocol-enhanced (ZSEP-E), have been developed for energy optimization. The ZSEP-E is a heterogeneous zone-based clustering protocol that focuses on unbalanced energy consumption with parallel formation of clusters in zones and election of cluster heads (CHs). Most ZSEP-E research has assumed probabilistic election of CHs in the zones by considering the maximum residual energy of nodes. However, studies of the diverse CH election parameters are lacking. We investigated the performance of the ZSEP-E in such scenarios using a fuzzy logic approach based on three descriptors, i.e., energy, density, and the distance from the node to the base station. We proposed an efficient ZSEP-E scheme to adapt and elect CHs in zones using fuzzy variables and evaluated its performance for different energy levels in the zones.

Reinforcement Learning-based Duty Cycle Interval Control in Wireless Sensor Networks

  • Akter, Shathee;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • One of the distinct features of Wireless Sensor Networks (WSNs) is duty cycling mechanism, which is used to conserve energy and extend the network lifetime. Large duty cycle interval introduces lower energy consumption, meanwhile longer end-to-end (E2E) delay. In this paper, we introduce an energy consumption minimization problem for duty-cycled WSNs. We have applied Q-learning algorithm to obtain the maximum duty cycle interval which supports various delay requirements and given Delay Success ratio (DSR) i.e. the required probability of packets arriving at the sink before given delay bound. Our approach only requires sink to compute Q-leaning which makes it practical to implement. Nodes in the different group have the different duty cycle interval in our proposed method and nodes don't need to know the information of the neighboring node. Performance metrics show that our proposed scheme outperforms existing algorithms in terms of energy efficiency while assuring the required delay bound and DSR.

A novel watermarking scheme for authenticating individual data integrity of WSNs

  • Guangyong Gao;Min Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.938-957
    • /
    • 2023
  • The limited computing power of sensor nodes in wireless sensor networks (WSNs) and data tampering during wireless transmission are two important issues. In this paper, we propose a scheme for independent individual authentication of WSNs data based on digital watermarking technology. Digital watermarking suits well for WSNs, owing to its lower computational cost. The proposed scheme uses independent individual to generate a digital watermark and embeds the watermark in current data item. Moreover, a sink node extracts the watermark in single data and compares it with the generated watermark, thereby achieving integrity verification of data. Inherently, individual validation differs from the grouping-level validation, and avoids the lack of grouping robustness. The improved performance of individual integrity verification based on proposed scheme is validated through experimental analysis. Lastly, compared to other state-of-the-art schemes, our proposed scheme significantly reduces the false negative rate by an average of 5%, the false positive rate by an average of 80% of data verification, and increases the correct verification rate by 50% on average.

Efficient Measurement Method for Spatiotemporal Compressive Data Gathering in Wireless Sensor Networks

  • Xue, Xiao;Xiao, Song;Quan, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1618-1637
    • /
    • 2018
  • By means of compressive sensing (CS) technique, this paper considers the collection of sensor data with spatiotemporal correlations in wireless sensor networks (WSNs). In energy-constrained WSNs, one-dimensional CS methods need a lot of data transmissions since they are less applicable in fully exploiting the spatiotemporal correlations, while the Kronecker CS (KCS) methods suffer performance degradations when the signal dimension increases. In this paper, an appropriate sensing matrix as well as an efficient sensing method is proposed to further reduce the data transmissions without the loss of the recovery performance. Different matrices for the temporal signal of each sensor node are separately designed. The corresponding energy-efficient data gathering method is presented, which only transmitting a subset of sensor readings to recover data of the entire WSN. Theoretical analysis indicates that the sensing structure could have the relatively small mutual coherence according to the selection of matrix. Compared with the existing spatiotemporal CS (CS-ST) method, the simulation results show that the proposed efficient measurement method could reduce data transmissions by about 25% with the similar recovery performance. In addition, compared with the conventional KCS method, for 95% successful recovery, the proposed sensing structure could improve the recovery performance by about 20%.

An Energy Awareness Congestion Control Scheme based on Genetic Algorithms in Wireless Sensor Networks (무선 센서 네트워크에서의 유전자 알고리즘 기반의 에너지 인식 트래픽 분산 기법)

  • Park, Jun-Ho;Kim, Mi-Kyoung;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.38-50
    • /
    • 2011
  • For energy-efficiency in Wireless Sensor Networks (WSNs), when a sensor node detects events, the sensing period for collecting the detailed information is likely to be short. The lifetime of WSNs decreases because communication modules are used excessively on a specific sensor node. To solve this problem, the TARP decentralized network packets to neighbor nodes. It considered the average data transmission rate as well as the data distribution. However, since the existing scheme did not consider the energy consumption of a node in WSNs, its network lifetime is reduced. The proposed scheme considers the remaining amount of energy and the transmission rate on a single node in fitness evaluation. Since the proposed scheme performs an efficient congestion control it extends the network lifetime. The simulation result shows that our scheme enhances the data fairness and improves the network lifetime by about 27% on average over the existing scheme.

Bio-inspired Node Selection and Multi-channel Transmission Algorithm in Wireless Sensor Networks (무선 센서망에서 생체시스템 기반의 전송노드 선택 및 다중 채널 전송 알고리즘)

  • Son, Jae Hyun;Yang, Yoon-Gi;Byun, Hee-Jung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • WireWireless sensor networks(WSNs) are generally comprised of densely deployed sensor nodes, which causes highly redundant sensor data transmission and energy waste. Many studies have focused on energy saving in WSNs. However, delay problem also should be taken into consideration for mission-critical applications. In this paper, we propose a BISA (Bio-Inspired Scheduling Algorithm) to reduce the energy consumption and delay for WSNs inspired by biological systems. BISA investigates energy-efficient routing path and minimizes the energy consumption and delay using multi-channel for data transmission. Through simulations, we observe that the BISA archives energy efficiency and delay guarantees.

Self Organization of Sensor Networks for Energy-Efficient Border Coverage

  • Watfa, Mohamed K.;Commuri, Sesh
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.57-71
    • /
    • 2009
  • Networking together hundreds or thousands of cheap sensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. As sensor nodes are typically battery operated, it is important to efficiently use the limited energy of the nodes to extend the lifetime of the wireless sensor network (WSN). One of the fundamental issues in WSNs is the coverage problem. In this paper, the border coverage problem in WSNs is rigorously analyzed. Most existing results related to the coverage problem in wireless sensor networks focused on planar networks; however, three dimensional (3D) modeling of the sensor network would reflect more accurately real-life situations. Unlike previous works in this area, we provide distributed algorithms that allow the selection and activation of an optimal border cover for both 2D and 3D regions of interest. We also provide self-healing algorithms as an optimization to our border coverage algorithms which allow the sensor network to adaptively reconfigure and repair itself in order to improve its own performance. Border coverage is crucial for optimizing sensor placement for intrusion detection and a number of other practical applications.