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Abstract 

 
By means of compressive sensing (CS) technique, this paper considers the collection of sensor 
data with spatiotemporal correlations in wireless sensor networks (WSNs). In 
energy-constrained WSNs, one-dimensional CS methods need a lot of data transmissions 
since they are less applicable in fully exploiting the spatiotemporal correlations, while the 
Kronecker CS (KCS) methods suffer performance degradations when the signal dimension 
increases. In this paper, an appropriate sensing matrix as well as an efficient sensing method is 
proposed to further reduce the data transmissions without the loss of the recovery performance. 
Different matrices for the temporal signal of each sensor node are separately designed. The 
corresponding energy-efficient data gathering method is presented, which only transmitting a 
subset of sensor readings to recover data of the entire WSN. Theoretical analysis indicates that 
the sensing structure could have the relatively small mutual coherence according to the 
selection of matrix. Compared with the existing spatiotemporal CS (CS-ST) method, the 
simulation results show that the proposed efficient measurement method could reduce data 
transmissions by about 25% with the similar recovery performance. In addition, compared 
with the conventional KCS method, for 95% successful recovery, the proposed sensing 
structure could improve the recovery performance by about 20%. 
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1. Introduction 

Wireless sensor networks(WSNs) have been considered as a powerful tool for environment, 
health and military monitoring [1][2]. A general WSN consists of one sink node(or base 
station) and a large number of sensor nodes deployed over a target area of interest and 
equipped with self-organizing wireless devices that could sense a wide variety of information, 
including humidity, illumination, temperature and so on [1]. Since the sensor nodes are often 
battery-powered, the energy of them is highly limited and it is impractical to charge or replace 
all the batteries simultaneously, which lead to extreme energy constraints for many WSNs 
platforms [3][4]. To reduce the energy consumption, traditional approaches reduced the data 
transmissions of the entire network by in-network data compression, including entropy coding 
or transform coding. However, the coding procedure brings the computation and control 
overheads to the senor nodes. 

Recently, the theory of Compressive sensing (CS) [5][6][7][8] states that a compressible 
signal can be recovered through highly incomplete information which is obtained by linear 
measurements. And since the preliminary works for data collection in [9][10], a number of 
works like [11-20] have indicated that the sampling and transmission costs can be reduced 
through CS linearly combining the content of packets as they are routed to the sink node. We 
found that the classical Compressive Data Gathering (CDG) [11][12] requires many sensor 
nodes to participate in generating each measurement and the sparse measurement matrix in [14] 
needs more measurements, so the transmission cost of the network remains relatively high. To 
overcome the problem, a sparsest random scheduling for CDG is presented in [17]. We noticed 
that the schemes above only considered the spatial correlations. In practical WSNs with 
densely deployed nodes, data over a certain consecutive time encompass both spatial and 
temporal (spatiotemporal) correlations [4]. CS could also be applied to exploit the temporal 
correlations to enhance the precision of data gathering for networks without stringent delay 
constraint. 

Several works have been proposed using different methods to exploit data correlations 
both temporally and spatially. For example, in [21] the authors mainly made use of diffusion 
wavelets to characterize the spatiotemporal correlations well, and investigates 
minimum-energy problem of NP-completeness. As a measurement vector is obtained by 
solving an optimization problem, the computational and communication overhead of the 
adaptive algorithm proposed in [22] is relative high. For the online recovery of large data in 
WSN, G. Quer et al. [23] is focused on Principal Component Analysis (PCA) to capture the 
spatiotemporal characteristics of real signals. Afterwards, a sequential CS (Seq-Pro-CS) 
scheme [24] utilizing sliding window is proposed to reconstruct the data with the 
spatiotemporal correlations. The paper [25] introduced low-rank constraints to improve the 
recovery accuracy of signal. And the recovery performance depends on the historical matrix. 
The papers [24][25] above mainly focused on treating the data as continuous-time streams. For 
a mobile sink node, the authors [26][26] have provided an energy-efficient data storage model 
to reduce the number of transmissions by exploiting the spatiotemporal correlations. This 
model introduces a post-processing procedure to optimize the measurement collection, which 
brings additional calculations. The spatiotemporal (CS-ST) method in [28] conveyed the 
temporal measurements of each sensor node across the links without any aggregation at 
intermediate nodes. Compared with the method of the spatial (or temporal) dependence in [28], 
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the CS-ST method reduces the data traffic. However, the CS-ST method requires every node 
to send measurements to the sink node, and the in-network transmissions are still high.  

Actually, the optimization procedure of the measurement collection could be eliminated 
by carefully designing the structure of the sensing matrix. Moreover, with a well-designed 
matrix structure, the in- network transmissions could be reduced. In this paper, by designing 
the sensing matrix carefully, an efficient data gathering method is proposed. In the proposed 
method, only a subset of all sensor nodes needs to send measurements during data collection. 
Therefore, the in-network transmissions could be reduced significantly. Moreover, the 
proposed method does not introduce any pre-processing or post-processing procedure, and 
therefore does not require extra computational costs. In addition, the proposed method does 
not exhibit performance degradation as that in the conventional Kronecker CS (KCS) [29] 
[30][31] data gathering method.  

Specifically, the proposed efficient measurement method for data gathering mainly has 
two phases. During the first phase, the temporal measurements are generated independently 
based on both different CS measurement matrices and data of different sensor nodes over 
several consecutive time slots. Then in the second phase, a part of temporal linear 
measurements is sent to the sink node in the shortest path. Data of all sensor nodes could be 
recovered by CS theory. By different measurement matrices operating on each portion of the 
multidimensional signal, the method formed a new measurement structure. According to the 
properties of the Kronecker product, we proved that the proposed measurement structure can 
be unified into an equivalent sensing matrix which can be solved by the existing minimization 
program of one-dimensional (1-D) vector.  
This paper has three main contributions: 
·An efficient measurement method for gathering data over a certain time is designed, in 

which a new structure is formed in order to improve the recovery performance of conventional 
KCS and reduce data transmissions of the CS-ST method. 

·A theoretical analysis is carried out and indicates that the mutual coherence of the 
improved measurement structure and sparsifying basis is relatively small according to the 
selection of the measurement matrix, which ensures the sensor data could be reconstructed 
with high probability from a small number of CS measurements.  
·The validation of our efficient measurement method through simulations with different 

network sizes. Compared with the conventional CS-ST method, the simulation results show 
that the proposed efficient measurement method could reduce data transmissions and achieve 
the same data reconstructed performance. In addition, the method outperforms general KCS 
method in reconstruction quality. 

The rest of the paper is organized as follows. Section 2 recapitulates CS background and 
system model in WSN. Section 3 proposes the spatiotemporal data gathering method and 
studies the recovery performance of the improved KCS structure. Simulation results are given 
in Section 4 and Section 5 provides conclusion and future work. 

2. Compressive Sensing Background and System model for WSN 
In this section, we first briefly introduce the basic fundamentals of Compressive Sensing 
theory, and then describe the system model for WSN. 
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2.1 Fundamentals of Compressive Sensing 

According to CS theory, K -sparse signal NR∈X can be faithfully recovered from ( )M M N<  
linear measurements (projections) MR∈y  by 1l  minimization 
 

==Φ ΦΨy X f                                 (1) 
 
where Φ  represents a M N×  ( M N< )measurement matrix, and Ψ  is transformation basis of 
size N N× . CS technology seeks to successfully reconstruct the signal with as few 
measurements as possible. To ensure exact reconstruction, one conclusion is presented in [32], 
which indicates that the minimal number M  relies on the mutual coherence µ of an 
orthogonal matrix N N×  0Φ  and another orthogonal matrix N N× 0Ψ  
 

2
0 0( ) log( / )M CK Nµ δ≥ Φ ,Ψ                                               (2) 

 
where C  is a small positive constant, µ is defined as the following (3): 
 

 0 0 0 0 0 01 ,
( ) max  ,         , ,     1

k j N
N N Nµ µ

≤ ≤
= = = ≤ ≤* *Φ ,Ψ Φ Φ Ψ ΨI Ik jφ ψ            (3) 

 

where the rows of 0Φ  are the  kφ , 1, 2k N=   and the columns of 0Ψ  are the jψ , 

1, 2j N=  , 0
*Φ  is the conjugate transpose matrix of 0Φ , N NR ×∈I  is the identity matrix.  

 

2.2 System Model for WSN 
We consider that N  nodes in a WSN are randomly distributed over a unit square area of 
size =1 1A × . In order to guarantee the connectivity of the entire network, all nodes are 
assumed to have identical transmission range of 2 ln( )r A N Nπ>  and any two nodes could 
communicate with each other if their Eucilidian distance is less than r  [26][33]. Sensor data 
of the whole network over a certain time are assumed to exhibit both temporal and spatial 
correlations. 

Let X ×∈ T NR  denote the sensor readings of a WSN with N  nodes over T  time slots, and 
the ( , )-t i th  entry ,t iX ,1 ,1t T i N≤ ≤ ≤ ≤  represents the sensor reading of the i th−  node at the 

t th− time slot. Meanwhile, the column vector 1
:,  T

i R ×∈


X denotes the readings of the senor 

node i  across T  time slots, and the row vector 1
,:

N
t R ×∈



X denotes the readings of all nodes at 
the time slot t . Taking advantage of the spatiotemporal correlations among the data 
block X ×∈ T NR , the design goal is to achieve the faithful recovery of data X ×∈ T NR  through 
randomly gathering a subset of the temporal measurements of sensor readings. 
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3. Efficient Measurement Method for Data Gathering 
In this section, we describe in detail how a separable sensing operator can be applied to the 
collection of data with the spatiotemporal correlations in WSNs, which formed the proposed 
efficient measurement method for data gathering as shown in Fig. 1. It begins with the CS 
measurements of the selected sensor readings in temporal domain and then transmits the 
measurements to the sink node. Based on above data transmitting process, an improved KCS 
structure is formed for sensor readings recovery at the sink node. To illustrate the data 
recovery performance of the proposed new structure, its mutual coherence is analysed in 
theory. 
 

 
Fig. 1.  The framework of the efficient measurement method for data gathering in a WSN 

 

3.1 Spatiotemporal Data Gathering Method through Efficient Measurement  
Since each sensor is supposed to be a tiny battery powered sensing unit with a finite amount of 
energy, we should reduce the number of data transmitting as much as possible to save the 
energy consumption. Note that the sensor readings generally exhibit both temporal and spatial 
correlations in the real applications of densely deployed WSNs [24][34]. To reduce the data 
transmissions in the network, a separable CS operator could be used to transmit the temporal 
measurements of partial sensor nodes by exploiting the spatiotemporal correlations. Next we 
will describe the operation of each stage in detail. The communication in the whole network is 
assumed to be synchronized and slotted. 

At the beginning of the efficient measurement method, i.e., the initialization stage, given 
a compressible sensor reading block T NR ×∈X , each sensor node is equipped with a temporal 
measurement matrix    1, 2m T

i R i N×∈ = A .To effectively capture the information of the 
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temporal data, the structures of iA are designed to be different. During each sensing period T , 
n ( n N< ) different sensor nodes are selected randomly and uniformly from all N sensor 
nodes.  

Based on the nature of the linear combinations in CS, it is noticed that the larger the 
number of the sensor nodes involved in the generation of one CS measurement, the higher the 
transmission cost. We choose a subset of nodes in order to reduce the number of nodes 
participating in the generation of one measurement, thus reducing the transmission cost of the 
network. The destination of uniformly selecting nodes at random is to capture enough spatial 
information and keep each sensor node participating evenly. The subset that formed by n  
selected nodes will change when the period T  changes. Due to the random selection, the 
probability of each node being selected is equal, denoted as Tp . For the network after several 
periods TT , from the perspective of probability, the average number of times that a node is 
selected is T TT p . (The relevant instruction is provided in appendix A.) When the sensor nodes 
selection is completed, the identification numbers (IDs) of the selected nodes are denoted by a 
set { } { }1 2, ,  1, 2 , 1, 2 .n pNS sl sl sl sl N p n= ∈ =  ，  

Then, the data forwarding stage is started, when a sensor node receives the instruction to 
collect data, this node obtains m T<  linear measurements according to the following 
expression:  

:,    
slp pp sl psl NS= ∈



Y A X , 1m
p R ×∈Y , where 1

:,  
slp

TR ×∈


X is the original reading of the sensor node 

psl .  
According to the CS theory, each sensor node compresses its T - length signal over T  

time slots into m  linear measurements. So instead of transmitting original T - length signal, 
m measurements could be transmitted to the sink node ( m T< ) which could reduce 
transmission cost. Each node psl NS∈ ( 1,2p n=  ) could form its initial transmission packet. 
Specifically, the packet of the psl th−  node, denoted by the structure

pslPA , has two 

independent components. The first component in 
pslPA  is the ID index isl  of the 

node: .c1 [ ]
psl pPA sl= , and the second one is data :,slp



X multiplied by the coefficient 

matrix: :,.c 2 [  =  ]
p p slpsl sl pPA =



A X Y . These packets are transmitted to the sink node through 

conventional routing protocol (e.g. the shortest path). 
Finally, when the multi-hop forwarding process of all the packets is finished, we can 

extract the corresponding information of different components to form the CS decoding 
information at the sink node. The sink node is responsible for the sensor data recovery as 
shown in Algorithm 1 in section 3.2. Considering that CS encoding procedure takes advantage 
of the spatial-temporal correlations, the original reading data X ×∈ T NR could be recovered 
with high precision through less data transmissions. 

According to the gathering method above, we will elaborate on the formation of CS 
measurement matrix which is important in decoding algorithm. To reduce the transmitting 
overhead, data packets do not need transmitting the temporal matrices iA .The sink node could 
obtain iA  through adopting the following method [35]: each node generates its temporal 
measurement matrix iA using the random seeds instructions from the sink node, then 
according to the random seeds, the sink could generate all temporal measurement matrix iA . 
On the other hand, the sink node could obtain the linear measurements 
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** * * *
1 2 3

nm
n R  ∈ Y Y Y Y Y=  by the second components of the packets of n  nodes as the 

following representation: 
 

1 11 1 :,1 12 2 :,2 1 :,N

2 21 1 :,1 22 2 :,2 2 :,N

1 1 :,1 2 2 :,2 :,N

N N

N N

n n n nN N

β β β
β β β

β β β

 + + + 
   + + +  = =   
    + + +   

  



  






  



Y A X A X A X
Y A X A X A X

Y

Y A X A X A X

                  (4) 

 
Where *Y  denotes the conjugate transpose matrix ofY . 

More concretely, the expression (4) above could be taken as: 
 

1 11 12 1 1 :,1

2 21 22 2 2 :,2

1 2 :,N

0 01 0 0
0 00 1 0

=

0 00 0 1

   

N

N

n n n nN N

β β β
β β β

β β β

         
         
         = ⊗          
                       



 



 

            



 

Y A X
Y A X

Y

Y A X

=( )⊗ BLOKβ I A x

      (5) 

 

Where m mR ×∈I is identity matrix, , 1,2m T
i R i N×∈ = A , 

1 2[ ] mN TN
Ndiag R ×= ∈BLOK A A A A  is a block-diagonal temporal measurement 

matrix，and  
 

:,1

:,2

:,N

( ) TNvec R

 
 
 

= = ∈ 
 
 
 









：

X

X
x X

X

 

So based on the property of Kronecker product, we formed this new structure ( )⊗ BLOKβ I A  
in (5) to efficiently measure the spatiotemporal sensory data. The structure of BLOKA means that 
different measurement matrices for the temporal signal of each sensor node are separately 
designed, which is different from the structure of KCS that based on the same measurement 
matrix operating on each node. It is noticed that the spatial measurement matrix n NR ×∈β  is 
formulated by the transmission protocol, denoted by 

 
11 12 1

21 22 2

1 2

N

N

n n nN

β β β
β β β

β β β

 
 
 =
 
 
 





   



β                       (6) 

 
which is crucial to the data gathering method based CS in WSN.  

According to the operation of the first stage in the proposed method, the sparse 
sampling(routing) matrix n NR ×∈β  has only one element equal to 1 per row and at most one 
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element equal to 1 per column, and all the other elements are equal to zero. Thus, the elements 
in Y are a random subset of those in{ }:, , 1,2  i iX i N=



A . In other words, if the subset is 
denoted by =NS NS n， , the measurements could be obtained from the second 

component { }.c 2|  
psl pPA sl NS∈ . That indicated the location of non-zero entries of β  is 

determined by the sensor nodes which are selected to sample measurement. In particular, if β  
is ×N N identity matrix, ( )⊗ BLOKβ I A is degraded into the structure of CS-ST [28] that 
requires transmitting the temporal measurements of all nodes. 
 

3.2 Formation of the Equivalent Sensing Matrix by Improved Kronecker 
Structure  

Assume that the sensor reading X ×∈ T NR is sparse and the corresponding sparsifying basis is 
two-dimensional (2-D) separable [29]. Thus, X  can be written as: ( )*

.X Ψ Ψx y= χ where 
Ψ ×∈x

T TR  and Ψ ×∈y
N NR  are two sparsifying basis corresponding to temporal domain and 

spatial domain, respectively, the matrix N NR ×∈χ  is a sparse matrix with sparsity S . 
Depending on a standard property of the Kronecker product, we have 
 

 ( )( ) ( ) ( )*
( )= =vec vec vec= = ⊗ se

x y y xχ χ Ψx X Ψ Ψ Ψ Ψ f                    (7) 

 
Where ⊗se

y xΨ =Ψ Ψ  is a sparsifying basis that is 2-D separable, and ( )=vec χ f . 
Substituting (7) into (5), we can obtain the equivalent sensing matrix Q : 
 

( ) ( )( ) = =vec= ⊗ ⊗ se
BLOK y x χ ΦΨY β I A Ψ Ψ f Qf                          (8) 

 
where Q se= ΦΨ , ( )⊗ BLOKΦ = β I A  is a spatiotemporal measurement operator. By means of the 
CS technology, the sink node could recovery the coefficient f  according to the expression (8) 
and then recovery the entire data X as shown in Algorithm 1. 
 
Algorithm 1: Sensor data recovery at the sink node 
 
Input: n nodes are randomly selected as the spatial sampling nodes, different temporal measurement matrices 

, 1,2,i i N= A , received linear measurements ( pY ) of sensor data over temporal domain, sparsifying 

basis seΨ  according to(7), dct dct⊗seΨ =Ψ Ψ ; 

Output: recovery sensory data X , the mean square error( MSE ); 
1 0←β ;                                              /* Initializing the spatial measurement matrix*/ 

2 { }   p pNS sl if is received← Y         /* Record the index of received linear measurements of sensor data */ 

   { }1,2 , 1,2psl N p n∈ =   ; 

3 for 1=p to =p n do       
        for 1=j  to =j N  do 

              if = pj sl , ( , ) 1←p jβ ;              /* Assign spatial measurement matrix*/ 
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             else   
continue; 

             end if; 
       end for; 
   end for; 
4 ( )← ⊗ BLOKΦ β I A according to formula (5);   /* Generate spatial-temporal measurement matrix*/ 

5 ← seΦΨQ ;                                                    /* Generate equivalent sensing measurement matrix*/  

6 =f CS-recovery( Q , pY );             /* Use the GPSR algorithm to reconstruct the sparse coefficient of the signal*/ 

7 1−= seΨX f ;                                                /* Recovery the entire sensory data*/   

8 
2

2

2

2

( ) ( )

( )

−
=

vec vec
MSE

vec

X X

X
                          /* Recovery the entire sensory data*/   

 
 

3.3 Recovery performance Analysis of the Equivalent Sensing Matrix 
According to the conclusion in [32], smaller mutual coherence will achieve accurate recovery 
of the original data X  through fewer CS measurements. The following theorem indicates that 
according to the selection of the matrices iA , the improved structure could reduce the mutual 
coherence compared to conventional KCS structure, so the new method formed by the 
improved structure could enhance the recovery performance of the signal. 
Remark1: Suppose β ×∈N N NR  is an orthogonal matrix by shuffling the columns of 

×N N identity matrix, and

11 12 1

21 22 2

1 2

=           1,2A ×

 
 
 ∈ =
 
 
 







   



i i i
T

i i i
TT T T

i

i i i
T T TT

a a a
a a a

R i N

a a a

. Then we can obtain 

that 1=β R βN , 2= T
i iA R A , where 1R  samples n  rows uniformly at random from matrix Nβ and 

2R samples m  rows uniformly at random from A T
i  [29].  

Let A ×∈NT
BLOK

NT NTR  be a block diagonal matrix given by the following structure, in 
which A T

i  is the above expression: 
 

1

2

T

T

T
N

 
 
 
 
  
 

NT
BLOK

0 0 0
0 0 0

=
0 0 0
0 0 0



A
A

A

A

 

Then the matrix TN TNR ×⊗ ∈N N NT
T BLOKΦ = ( )β I A is also an orthogonal matrix, in which IT is 

the ×T T  identity matrix. 
Theorem 1 ：  Let β I A ×⊗ ∈N N NT

T BLOKΦ = ( ) NT NTR  denotes an orthogonal matrix, 
NT NTR ×⊗ ∈se

y xΨ =Ψ Ψ  is a separable orthogonal base on NTR , in which Ψ ×∈x
T TR  and 

Ψ ×∈y
N NR  are the base matrices. Then the mutual coherence ( , )µ N seΦ Ψ  obeys the following 

inequality: 
 

( )max( ) ( )µ µ µ µ= ⊗ ⊗ ≤N se N NT N
T BLOK y x yΦ ,Ψ ( ) ,β I A ,Ψ Ψ β Ψ                 (9) 
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where { }max 1,2

max ( )T
ii N

µ µ
=

= ,


xA Ψ . 

Proof: Using the definition of µ  in (3), the quantity of interest is
1 ,

( )= max ψµ
≤ ≤

N seΦ ,Ψ se
p qp q NT

φ , , 

where pφ  are the rows of NΦ  and ψ se
q  are the columns of seΨ . 

In further, = ,ψ β I A ψ ⊗ 
N NT

T BLOK( )se se
p q qp

φ , , , 1,2= p q NT . 

When the row index p  of NΦ satisfies [ ]( 1) 1,      1,2,∈ − + = p k T kT k N , the -p th  row of 
NΦ can be represented as the following formula (10)： 

 
1 2

1 2(     )β I A β β β ⊗ = 
N NT

T BLOK( ) a a a

N
k l k l kN lp

                            (10) 

 
where ( )** * *

1 2, ,A = a a a

T i i i
i T , i T

l R∈a  is the -l th  row vector of the matrix A T
i , 

1,2   1,2= = ，i N l T . 
Suppose that ( )1 2= ,y y y

Ny Ψ ψ ψ ψ , y N
r R∈ψ ( 1,2r N=  )denotes the -r th  column vector of the 

matrix yΨ , ( )1 2= x x x
Tx Ψ ψ ψ ψ, , x T

s R∈ψ ( 1,2s T=  ) denotes the -s th  column vector of the 
matrix xΨ . 
Because ⊗se

y xΨ =Ψ Ψ , then the following formula (11) could be obtained: 
 

( )1 2            se se se se y x
NT q r s= = ⊗seΨ  ψ ψ ψ ψ ψ ψ,                                            (11) 

 
where ψ se

q ( 1,2= q NT ) denotes the -q th  column vector of the matrix seΨ . 
According to above formulas (10) and (11), then we have: 
 

( )

1 2
1 2

1 2
1 2 1 2

1
1 1

, = (      ),

                                  = (      ), ( , , )

                                  = ,

se N y x
q k l k l kN l r sp

N y x y x y x
k l k l kN l r s r s Nr s

y x
k r l s

vec

β β β

β β β ψ ψ ψ

β ψ

 ⊗ ⊗ 

+

N NT
T BLOK( ) a a a

a a a

a



 

β I A ψ ψ

ψ ψ ψ

ψ

ψ

( ) ( )2
2 2 , ,y x y N x

k r l s kN Nr l sβ ψ β ψ+ +a aψ ψ

    (12) 

 
Where y

orψ represents the -o th  row and -r th  column entry of matrix yΨ , 
1,2 1,2o N r N= = ， . 

Consequently, we can conclude that 
 

( ) ( ) ( ){ }
( ) ( ) ( ) ( )

1 , 1 ,

1 2
1 1 2 21 , 1 ,

1 1 1 2 2 21 ,

( )= max = max ,

              = max max , , ,

              max

se se
p q qpp q NT p q NT

y x y x y N x
k r l s k r l s kN Nr l sk r N s l T

y T y T
k r k rk r N

µ

β ψ β ψ β ψ

β ψ µ β ψ µ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤

 ⊗ 

+ + +

≤ + +

N se N NT
T BLOKΦ ,Ψ ( )

a a a

, ,



x x

ψ β I A ψ

ψ ψ ψ

A Ψ A Ψ

φ ,

( ) ( ){ }+ y T
kN Nr Nβ ψ µ , xA Ψ

   (13) 

 
where ( )

1 s,
max ,T i x

i l sl T
µ

≤ ≤
=, axA Ψ ψ , 1, 2i N=  ,that is, 
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( ) ( ) ( )1 2

1 21 s, 1 s, 1 s,
max , = max , =  max , =x T x T N x T

l s l s l s Nl T l T l T
µ µ µ

≤ ≤ ≤ ≤ ≤ ≤
a , a , a ,， ， ，x x xψ A Ψ ψ A Ψ ψ A Ψ     (14) 

 
Let { }max 1,2

max ( )T
ii N

µ µ
=

= ,


xA Ψ . According to the expression (13), ( )µ N sΦ ,Ψ  can be bounded as: 

 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

( )

21 ,

1 1 1 2 2 21 ,

max 1 1 2 21 ,

max

( )= max ,

              max +

              max

               

se
qpp q N

y T y T y T
k r k r kN Nr Nk r N

y y y
k r k r kN Nrk r N

µ

β ψ µ β ψ µ β ψ µ

µ β ψ β ψ β ψ

µ µ

≤ ≤

≤ ≤

≤ ≤

 ⊗ 

≤ + +

≤ + + +

=

N se N NT
T BLOK

N

Φ ,Ψ ( )

, , ,

,





x x x

y

β I A ψ

A Ψ A Ψ A Ψ

β Ψ

  (15) 

 
where ( )

1 ,
= max , y

k rk r N
µ

≤ ≤

N , yβ Ψ β ψ , βk  is the -k th  row of the matrix βN . 

So the mutual coherence ( , )µ N seΦ Ψ  obeys  
( )max( ) ( )µ µ µ µ= ⊗ ⊗ ≤N se N NT N

T BLOK y x yΦ ,Ψ ( ) ,β I A ,Ψ Ψ β Ψ  
                                                                                                                                         ＃ 

 
Based on the expressions (2) and (9), we can conclude that the number of the 

measurements M mn= satisfies { } ( )( )2

1,2
max ( ) log( / )T

ii N
mn CS NTµ µ δ

=
≥ N

y, ,


xA Ψ β Ψ . This 

means that the number of measurements required for faithful recovery 

satisfies { } ( )( )2

1,2
= ( max ( ) log )T

ii N
mn S NTµ µ

=
Ο N

y, ,


xA Ψ β Ψ . If we select the appropriate matrices 

iA  to make this formula established: { } ( )
1,2
max ( ) = (1)T

ii N
µ µ

=
ΟN

y, ,


xA Ψ β Ψ , then 

= ( log )mn S NTΟ and the proposed structure TN TNR ×⊗ ∈N N NT
T BLOKΦ = ( )β I A will achieve the 

recovery performance comparable to that of random matrices.  
 
Remark 2: Let  
 

1 2
T T T T

N= = = =A A A A                       (16) 
 
When the (16) is satisfied, it is interesting to find that the structure T⊗Nβ A  of conventional 
KCS is a special case of the structure β I A⊗N NT

T BLOK( ) , and the following conclusion is 
consistent with the expression in [29]: 
 

( )   ( )= (( )= ( )= ( )T Tµ µ µ µ µ⊗ ⊗ ⊗ ⊗N se N NT N N
T BLOK y x y xΦ ,Ψ ) , ( , x yβ I A Ψ Ψ β A Ψ Ψ A ,Ψ β ,Ψ   (17) 

 
where max ( )Tµ µ= xA ,Ψ . In other words, the new structure (5) extends the structure of 
conventional KCS, we could select appropriate matrices iA  to reduce ( )T

iµ , xA Ψ and thus to 
reduce the mutual coherence ( )µ N seΦ ,Ψ . 
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4. Simulations and Analysis  
In this section, we will evaluate the performance of our proposed method by virtue of the 
Matlab simulation.  

4.1 Simulation Environment  
Two different metrics are used to measure the performance of our proposed method. For 
energy efficiency of the sensor network data gathering, the total number of transmitted packets 
of each sensing period is used to measure the lever of energy consumption in our simulations. 
Here, we use the typical hypothesis that both sensing energy and energy consumed for 
computation can be neglected in WSNs, and so the energy consumption is dominated by radio 
communication in transmitting and receiving data packets [22]. For the reconstruction quality 
of the sensor data, the mean square error( MSE ) is applied to measure the recovery accuracy of 
different methods and defined as following formulation:

2 2

22
( ) ( ) ( )MSE vec vec vec= −X X X ，

where X  represents the recovery data, X  represents the sensor data and 
2
⋅  is the 2L  norm 

of a vector. 
 We consider a WSN with N  sensors randomly deployed in a unit square, and the number 

of monitoring time slots for each sensing period is T . We assume that a shorted path tree has 
already been built in the network. In order to fairly compare the recovery results with the 
typical methods in [28], Ψx  and Ψy  are chosen to be the discrete cosine transformation (DCT) 
matrices with the sizes of T T× and N N× , respectively. The source sparse signal X  is 
artificially generated based onΨx  , Ψy  and the coefficient matrix χ  of random S -sparsity. 
The sampling rate of the signal X  is chosen to be 0.25.  
 

4.2 Reconstruction Performance 
In this section, we carry out simulations to evaluate the performance of our method. The 
evaluation process mainly includes two aspects: energy consumption of data collection in 
WSN and the recovery performance of the spatiotemporal data for different dimensions of the 
sensor networks. The gradient projection algorithm (GPSR) [36] is employed to reconstruct 
the sensor data from CS measurements. To validate the recovery performance of the proposed 
approach, we utilize the performance of the following different measurement methods for 
compared empirically. 

1. Global measurements (dense) for signals of any dimension multiplex all the values 
of the signal together. According to CS theory, the global random Gaussian matrix 
(GRG method) measuring ( )vec X  is universally incoherent with most fixed 
transforms (with overwhelming probability). So that GRG method is used as a 
baseline, which represents the optimal performance. 

2. The CS-ST method in [28] exploits the spatiotemporal correlations, in which each 
sensor node separately compresses its length T  reading data into t linear 
measurements ,<t T then the measurements of each node are conveyed to the sink 
node. For fair comparison in simulations, the sampling rate of the signal is also 0.25, 
so the value of t  is 0.25T . The reading data of each node is measured by distinct 
t T×  Gaussian matrix, in which the elements are independent identically distributed 
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(i.i.d.) random variables, so the measurement matrix is a block-diagonal matrix 
formed by N  Gaussian matrices. 

3. The classical kronecker measurement matrix obtained from the kronecker product 
of two dense Gaussian matrices (KGG method), which represent the optimal 
performance of conventional KCS model. The signal is sampled at the same 
sampling rate 0.5 on each dimension. 

In the proposed efficient measurement method, the measurements of a subset of sensor 
nodes are sent instead of transmitting the measurements of each node. Therefore, the selected 
nodes n would send the temporal measurements to the sink node, in which the selected nodes 
n  are a fraction of WSN nodes N . When the sampling rate 0.25  of the signal X is fixed 
( 0.25mn TN= ), the value of n varied with different m . We should select the appropriate value 
of n  to transmit data as small as possible without the loss of the recovery performance. For the 
case 64N =  and 32T =  in WSN, we simulate the recovery performance of the proposed 
method with different proportions of sensor nodes N to select the appropriate value of n . 

By repeating the trails 500 times in each simulation and calculating the fraction of the 
successful recovery, the empirical probability of the successful recovery is plotted as a 
function of the signal sparsity S  in Fig. 2. The x -axis of the performance curves represents 
the values of the signal sparsity S  vary from 75 to 145. The y -axis, instead, shows the 
probability of the signal successful recovery, where the successful recovery is achieved if the 
mean square error of the estimated sensor readings is less than 310− ( 0.001MSE < ). By using 
distinct i.i.d. Gaussian matrix for T

iA ( 2= T
i iA R A ) in the proposed method, Fig. 2 shows that 

the recovery performance varies depending on the different values of n . For the values of 
[ ]= 0.89n N and [ ]= 0.74n N  ( [ ]• denotes the rounding operation), the recovery performance is 

almost the same as GRG method. And for the values of [ ]= 0.8n N and [ ]= 0.61n N , the recovery 
performance declined compared with GRG method. The reason is that the sparsities of the 
temporal and spatial signal are different, and the selected measurements m and n  have a 
certain matching requirement. So in the following simulations, we select the [ ]= 0.74n N with 
the optimal recovery performance. 
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Fig. 2. When the sampling rate 0.25 of the signal X  is fixed ( 0.25mn TN= ), the successful recovery 

probabilities of X  with different proportions of N  in different sparsities S. 
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A. Energy consumption of data collection in WSN 

In terms of energy efficiency, for the case of 64N =  and 32T = , the total number of 
wireless transmission packets is counted by KGG, CS-ST and the efficient measurement 
method, respectively. Data transmission of dense GRG is too large to compare. For fair 
comparing with CS-ST and KGG methods, our proposed efficient measurement method is 
also used distinct i.i.d. Gaussian matrix for T

iA i N∀ ∈ . Meanwhile we select 
[ ]11  = 0.74 47m and n N= ≈ in simulation. In Fig. 3, the curves of the number of packets are 

plotted and the sensing period is increasing from 100 to 5000. It is clearly shown that the 
efficient measurement method transmitted fewer data packets than CS-ST and KGG, which 
indicates that the proposed measurement method collects data in a more energy efficient 
manner for WSN. Compared with CS-ST, the number of wireless transmissions is reduced by 
almost 25%. This is because the efficient measurement method makes full use of both the 
spatial and temporal correlation during data gathering, which doesn’t need each node to send 
the measurements to the sink node. 
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Fig. 3. The total number of wireless transmission packets by KGG, CS-ST and the proposed efficient 

measurement method for the case of 64N =  32T = and T
iA is distinct i.i.d. Gaussian matrix. 

 
 
B. The recovery performance of the spatiotemporal sensory data for different dimensions of 
the sensor networks 

The advantage of the proposed efficient measurement method is that collecting the 
measurements of a subset of nodes could achieve the same data reconstructed performance as 
collecting the measurements of each node. In Fig. 4, the average successful reconstructed 
probabilities of GRG, CS-ST, the proposed efficient measurement method and KGG are 
shown for case 64N =  and 32T = . For fair comparison, we also use distinct i.i.d. Gaussian 
matrix for T

iA in our proposed efficient measurement method in subfigure 1(a) of Fig. 4. In 
order to illustrate the validity of our proposed structure, in subfigure 2(b) of Fig. 4, we also 
consider distinct sparse matrix [23][24] for iA : all entries are zero, except for a single one in 
each row and at most a single one in each column. The simulation environment is the same as 
in Fig. 3. 
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a                                                                               b  

Fig. 4. The recovery performance of sensor data for case 64, 32N T= =  in different sparsities S. 
a Subfigure 1 The measurement methods are GRG, CS-ST, the proposed efficient measurement method 

and KGG. T
iA ( 2= T

i iA R A ) is distinct i.i.d. Gaussian matrix. 
b Subfigure 2 The measurement methods are GRG, CS-ST and the proposed efficient measurement 

method. iA  is distinct sparse matrix. 
 

In subfigure 1(a) of Fig. 4, it is clear shown that the proposed efficient measurement method 
has slightly better recovery performance than CS-ST and GRG. Meanwhile, the reconstructed 
performance of the efficient measurement method outperforms that of KGG by about 40% on 
sparsity of near 110. That is because the operations of distinct measurement matrix on each 
sampling node data reduce the mutual coherence of the measurement matrix and sparsifying 
basis. In particular, with the same sampling rate 0.25, the sparsity values required for 95%  
successful recovery are 117, 116, 117 and 95 for GRG, CS-ST, the efficient measurement 
method and KGG, respectively. In subfigure 2(b) of Fig. 4, the same trend exists for the 
efficient measurement method with distinct sparse matrix, which has the same recovery 
performance as CS-ST and GRG method. 

To compare with the different ratio of T N , similar to Fig. 4, the recovery performance 
curves of GRG, CS-ST, the proposed efficient measurement method and KGG are given for 
the other case 100N =  and 12T =  in Fig. 5. The values of the signal sparsity S  vary from 40 
to 100. For our proposed efficient measurement method in subfigure 3(c) of Fig. 5, we also use 
distinct i.i.d. Gaussian matrix for T

iA ( 2= T
i iA R A ).And in subfigure 4(d) of Fig. 5, we consider 

distinct sparse matrix for iA . The sampling rate is also 0.25, so the parameters of iA  
is 4m = and the number of collected sensor nodes is 75n = . It is clear in Fig. 5 that the trend of 
successful recovery for different methods is almost the same as that in Fig. 4. Specifically, the 
proposed efficient measurement method exhibits almost the same performance as that of GRG 
and CS-ST. The simulations in Fig. 4 and Fig. 5 indicate that the proposed efficient 
measurement method could be applied to the different ratio of T N . 
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c                                                                                        d 

Fig. 5. The recovery performance of sensor data for case 100, 12N T= = in different sparsities S. 
c Subfigure 3 The measurement methods are GRG, CS-ST, the proposed efficient measurement method 

and KGG. T
iA  ( 2= T

i iA R A ) is distinct i.i.d. Gaussian matrix. 
d Subfigure 4 The measurement methods are GRG, CS-ST and the proposed efficient measurement 

method. iA is distinct sparse matrix. 
 

In the previous simulations, the number of network nodes is small. To see how the efficient 
measurement method affects the recovery performance of data in large-scale WSN, we 
simulated another scenario with 500N =  and 6T = . The values of the signal sparsity S vary 
from 95 to 205. We compare the average successful reconstructed probabilities of the 
proposed efficient measurement method with that of GRG in Fig. 6, where T

iA is distinct i.i.d. 
Gaussian matrix in subfigure 5(e) of Fig. 6 and iA is distinct sparse matrix in subfigure 6(f) of 
Fig. 6. The sampling rate is also 0.25, so the parameters of iA  is 2m = and the number of 
collected sensor nodes is 375n = .It is shown in Fig. 6 that the efficient measurement method 
has almost the similar recovery performance as GRG. In particular, with the same sampling 
rate 0.25, the sparsity values required for 95%  successful recovery are 170 and172 for GRG 
and the efficient measurement method, respectively. As can be seen in these simulations above, 
the trend of the probability of success for the networks with different dimensions is similar.  
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Fig. 6. The recovery performance of sensor data for case 500, 6N T= = in different sparsities S. 
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e Subfigure 5 The measurement methods are GRG and the proposed efficient measurement method. 
T

iA  ( 2= T
i iA R A ) is distinct i.i.d. Gaussian matrix. 

f Subfigure 6 The measurement methods are GRG and the proposed efficient measurement method. 

iA is distinct sparse matrix. 
 

Compared with the conventional methods, the above simulation results indicate that the 
proposed efficient measurement method could reduce the energy consumption of the entire 
network in the process of the data collection without the loss of the reconstruct performance, 
when data show the spatial and temporal correlations. By virtue of the powerful decoding 
ability of the sink node and the sink node could accept the signal processing delay in 
non-real-time WSN application scenario, the efficient measurement method will be promising 
in practical implementation. The advantage of the proposed method is to remove the redundant 
data, so the method will be expectedly extended to the large-scale WSN. 

5. Conclusion and Future Work 
This paper has presented a framework for approximate data gathering which exploits both 
spatial and temporal correlations among the sensor readings in WSNs in order to achieve 
potentially higher compression ratio and improve the energy efficiency. In particular, instead 
of conveying the CS linear measurements of every sensor node to the sink node, only a subset 
of all sensor nodes according to our designed method is randomly selected to transmit the 
measurements to the sink node. Thereby the framework could reduce the number of wireless 
transmissions without sacrificing the data recovery performance. Numerical simulations 
suggest that the proposed measurement method is more energy efficient for data gathering in 
multi-hop WSNs. 

Meanwhile, the two-dimensional separable operator formed by the proposed data gathering 
method improved the recovery performance of the conventional KCS method. In the future 
work, we can jointly design a better method considering both routing and SNR to further 
improve the performance of data collection in WSN. The properties of the proposed 
two-dimensional separable operator will be studied in more detail, which could be applied to 
the recovery of the other two-dimensional signal. 
 

Appendix A 
The relevant mathematical model: 
During each sensing period T , n ( n N< ) different sensor nodes are selected randomly and 
uniformly from all N  sensor nodes. That means the subset that formed by n selected nodes 
will change when the period T  changes, so after some periods, each node could be balanced 
participation from the perspective of probability. The probability statistics model of the 
random selection is established as follows:  
(I): During a sensing period T , n different sensor nodes are selected randomly and uniformly 
from all N  nodes. In an experiment, the event that the node i  is selected can be denoted 
as iE , 1, 2i N=  , and we assume that: 

1
0 ,
        
          

i
i

i

node i is selected the event E occurred
Y

node i is not selected the event E is not occurred


= 


，
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Then iY  is a random variable that obeys two-points distribution. There are n
NC kinds of the 

subsets that formed by n different nodes. Because of the random selection, the probability of 
each node i being selected is equal: 

1 2 3( 1) ( 1) ( 1) ( 1)N Tp Y p Y p Y p Y p= = = = = = = = = . 
(II): For different sensing periods, the selection of one node i  could be seen as independent 
repeated experiments. In the TT  independent repeated experiments, the number of occurrences 
of the event iE , is a random variable iX , which obeys the binomial distribution iX ～ ( , )T TB T p .  
We have the probability: ( ) (1 )  T

T

T kk k
i T T TP X k C p p −= = −    0,1, 2 Tk T=  , 1 0 1T TT p≥ ≤ ≤，  

Then mathematical expectation satisfies ( )i T TE X T p=  according to the properties of the 
binomial distribution. So based on Bernoulli’s law of large numbers, the average number of 
occurrences of the event iE is T TT p . Because the status of all N nodes is equal, so according to 
the rotation symmetry principle, we have 1 2( ) ( ) ( )NE X E X E X= = = . 
So from the perspective of probability, after multiple sensing periods, the average number of 
times that each node is selected is equal. 
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