• Title/Summary/Keyword: Wireless Energy Transfer

Search Result 185, Processing Time 0.031 seconds

Distributed beamforming with one-bit feedback and clustering for multi-node wireless energy transfer

  • Lee, Jonghyeok;Hwang, SeongJun;Hong, Yong-gi;Park, Jaehyun;Byun, Woo-Jin
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2021
  • To resolve energy depletion issues in massive Internet of Things sensor networks, we developed a set of distributed energy beamforming methods with one-bit feedback and clustering for multi-node wireless energy transfer, where multiple singleantenna distributed energy transmitters (Txs) transfer their energy to multiple nodes wirelessly. Unlike previous works focusing on distributed information beamforming using a single energy receiver (Rx) node, we developed a distributed energy beamforming method for multiple Rx nodes. Additionally, we propose two clustering methods in which each Tx node chooses a suitable Rx node. Furthermore, we propose a fast distributed beamforming method based on Tx sub-clustering. Through computer simulations, we demonstrate that the proposed distributed beamforming method makes it possible to transfer wireless energy to massive numbers of sensors effectively and rapidly with small implementation complexity. We also analyze the energy harvesting outage probability of the proposed beamforming method, which provides insights into the design of wireless energy transfer networks with distributed beamforming.

Wireless Synchronous Transfer of Power and Reverse Signals

  • Li, Yang;Li, Yumei;Feng, Shaojie;Yang, Qingxin;Dong, Weihao;Zhao, Jingtai;Xue, Ming
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.827-834
    • /
    • 2019
  • Wireless power transfer via coupled magnetic resonances has been a hot research topic in recent years. In addition, the number of related devices has also been increasing. However, reverse signals transfer is often required in addition to wireless power transfer. The structure of the circuit for a wireless power transfer system via coupled magnetic resonances is analyzed. The advantages and disadvantages of both parallel compensation and series compensation are listed. Then the compensation characteristics of the inductor, capacitor and resistor were studied and an appropriate compensation method was selected. The reverse signals can be transferred by controlling the compensation of the resistor. In addition, it can be demodulated by extracting the change of the primary current. A 3.3 MHz resonant frequency with a 100 kHz reverse signals transfer system platform was established in the laboratory. Experimental results demonstrate that wireless power and reverse signals can be transferred synchronously.

Development of ultrasonic transducer system for wireless power transfer Part 1: Transmitter development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Lee, Sung-Q
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.771-776
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention of not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation for the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6% at 2m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfer distance.

  • PDF

Wireless Power Transfer Technologies Trends (무선전력전송에 대한 기술 개발 동향)

  • Eom, T.Y.;Oh, C.S.;Park, S.J.
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.174-178
    • /
    • 2015
  • We have surveyed on technical method of wireless power transfer and have also surveyed on applications of the wireless charging for mobiles and of the wireless charging for electrical vehicle and electrical equipments. In this study, we have described about wireless power transfer and have analyzed and checked wireless power transfer prospects of applications and practical development.

Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete

  • Kim, Ji-Min;Han, Minseok;Lim, Hyung Jin;Yang, Suyoung;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.631-646
    • /
    • 2016
  • Although the deployment of wireless sensors for structural sensing and monitoring is becoming popular, supplying power to these sensors remains as a daunting task. To address this issue, there have been large volume of ongoing energy harvesting studies that aimed to find a way to scavenge energy from surrounding ambient energy sources such as vibration, light and heat. In this study, a magnetic resonance based wireless power transfer (MR-WPT) system is proposed so that sensors inside a concrete structure can be wirelessly powered by an external power source. MR-WPT system offers need-based active power transfer using an external power source, and allows wireless power transfer through 300-mm thick reinforced concrete with 21.34% and 17.29% transfer efficiency at distances of 450 mm and 500 mm, respectively. Because enough power to operate a typical wireless sensor can be instantaneously transferred using the proposed MR-WPT system, no additional energy storage devices such as rechargeable batteries or supercapacitors are required inside the wireless sensor, extending the expected life-span of the sensor.

Development of Ultrasonic Transducer System for Wireless Power Transfer Part 1 : Transmitter Development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Yang, Woo-Seok;Lee, Sung-Q
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.845-852
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention from not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation on the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100 mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6 % at 2 m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfering distance.

A Robot System Maintained with Renewable Energy

  • Kim, Jaehyun;Moon, Chanwoo
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.98-105
    • /
    • 2019
  • Energy autonomy is a system that is sustained by energy from an independent and distributed source such as renewable energy. In this paper, we propose a robotic energy autonomy in which a robot obtains energy from a renewable energy source with a limited storage capacity. As an energy transfer method, wireless power transfer is used to solve the problem of the conventional contact charging method, mechanical complexity, and to obtain high energy transfer efficiency, the image information is used to align the transmitting and receiving coils accurately. A small scale thermoelectric energy source with boost converter, battery charger, and wireless power transfer coil is constructed and an actual charging experiment is conducted to verify the proposed autonomy system.

Review of Simultaneous Wireless Information and Power Transfer in Wireless Sensor Networks

  • Asiedu, Derek Kwaku Pobi;Shin, Suho;Koumadi, Koudjo M.;Lee, Kyoung-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.105-116
    • /
    • 2019
  • Recently, there has been an increase in research on wireless sensor networks (WSNs) because they are easy to deploy in applications such as internet-of-things (IoT) and body area networks. However, WSNs have constraints in terms of power, quality-of-service (QoS), computation, and others. To overcome the power constraint issues, wireless energy harvesting has been introduced into WSNs, the application of which has been the focus of many studies. Additionally, to improve system performance in terms of achievable rate, cooperative networks are also being explored in WSNs. We present a review on current research in the area of energy harvesting in WSNs, specifically on the application of simultaneous wireless information and power transfer (SWIPT) in a cooperative sensor network. In addition, we discuss possible future extensions of SWIPT and cooperative networks in WSNs.

Analysis of the Efficiency According to Resonant Repeater Application in Magnetic Resonant Wireless Power Transfer System (자기공진방식의 무선전력전송 시스템에서 공진 중계기 적용 여부에 따른 전력전송 효율 분석)

  • Baek, Seung-Myung;Kim, Dong-Eun;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.221-226
    • /
    • 2018
  • In this paper, the power transfer efficiency analysis based on the resonant repeater in a magnetic resonance wireless power transfer system is proposed. The efficiency of the magnetic resonance method was verified by comparing the general frequency with the resonance frequency. The resonance repeater was arranged to increase the efficiency and increase the transfer distance. When using resonant repeaters, the maximum efficiency increase is about 36.23[%] and the transfer distance was extended to more than 20[cm]. Through this study, confirmed the effect of using resonance repeaters in wireless power transfer system. As a result, it can be expected that the overall technology related to wireless power transfer system will be more valuable for energy-IT technology.

Graphical Design Plane Analysis for Series-Compensated Resonant Energy Links of Inductive Wireless Power Transfer Systems

  • Jeong, Chae-Ho;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1440-1448
    • /
    • 2019
  • In wireless power transfer systems, it is important to design resonant energy links in order to increase the power transfer efficiency and to obtain desired system performances. This paper proposes a method for designing and analyzing the resonant energy links in a series-series configured IPT (inductive power transfer) system using the FOM-rd plane. The proposed FOM-rd graphical design plane can analyze and design the voltage gain and the power efficiency of the energy links while considering changes in the misalignment between the coils and the termination load condition. In addition, the region of the bifurcation phenomena, where voltage gain peaks are split over the frequency, can also be distinctly identified on the graphical plane. An example of the design and analysis of a 100 W inductive power transfer system with the proposed method is illustrated. The proposed method is verified by measuring the voltage gain and power efficiency of implemented hardware.