• Title/Summary/Keyword: Wireless Controller

Search Result 330, Processing Time 0.03 seconds

A Plastic Cortex Stimulator for Stroke Recovery Using ZigBee technology (ZigBee 무선통신 기술을 이용한 뇌졸중 환자 치료용 뇌자극기 개발)

  • Kim, G.H.;Yang, Y.S.;Lee, S.M.;Kim, N.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.373-375
    • /
    • 2005
  • The purpose of this paper is to develop the Plastic Cortex Stimulator(PCS) for stroke patients using ZigBee technology. The PCS consists of an implantable neuro-stimulator and a user controller, The neuro-stimulator has the stimulus circuit which is the H-bridge circuit to generate a bipolar pulse. The bipolar pulse is known to be effective for stroke recovery. The user controller sends several wave-shape parameters (amplitude, pulse width, cycle, etc.) to the neuro-stimulator for variable stimulation using ZigBee technology. The CC2420 and atmega128L was used to implement ZigBee protocol stack. The wireless control of PCS based on ZigBee can help the tele-rehabilitation of the stroke patients. The most effective pulse shape parameters are being investigated through animal experiments. The bio-compatibility and user-friendly interface are supposed to be handled in further study.

  • PDF

Implementation of a New Guard Lamp and Traffic Light Controller Using Zigbee (Zigbee를 이용한 보안등, 신호등 제어기 구현)

  • Song, Jae-Yeol;Yu, Myung-Whan;Park, Du-Su;Park, Seong-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.637-638
    • /
    • 2008
  • In this paper, we describe a new guard lamp and traffic light controller using Zigbee one of near field communication. It can control guard lamp and traffic light system by wireless system. Also, it can definite in the sever system New guard lamp and traffic light using zibee system improved for waste power, an accident and management condition.

  • PDF

Development of a Coaxial Rotor Flying Robot for Observation (감시용 동축로터 비행로봇의 개발)

  • Kang, Min-Sung;Shin, Jin-Ok;Park, Sang-Deok;Whang, Se-Hee;Cho, Kuk;Kim, Duk-Hoo;Ji, Sang-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

Multi-UAV Formation Based on Feedback Linearization Technique Using Range-Only Measurement (거리 정보를 이용한 되먹음 선형화 기법 무인기 편대 비행제어)

  • Kim, Sung-Hwan;Ryoo, Chang-Kyung;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • This paper addresses how to make a formation of multiple unmanned aerial vehicles (UAVs) using only the relative range information. Since the relative range can easily be measured by an on-board range sensor like the laser range finder, the proposed method does not require any expensive and heavy wireless communication system to share the navigation information of each vehicle. Based on the two-dimensional (2-D) nonlinear equations of motion, we propose a nonlinear formation controller using the typical input-output feedback linearization method. The performance of the proposed formation controller is verified by various numerical simulations.

Study on the Low Frequency Wireless Recognition System (저주파를 이용한 무선인식 시스템에 관한 연구)

  • Jeong, Woan-Bo;Park, Yang-Ha;Lee, Won-Tae;Kim, Kwan-Ho;Lee, Young-Chel;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.931-933
    • /
    • 1995
  • In this paper, we develop protype of wierless recognition system using low frequency. Application of this system is very broad. Namely, High-way toll gate, animal management, parking system and industral automation et al. This system is composed of controller, decoder and tag. Controller is personal PC, decoder is signal module and tag is mobile corresponder module. Modulation is ASK, 4,800bps, frequency is 120/60kHz and transmission length is about 80cm. And now we study improvement of stability, low power consumption, compact of tag and transmission length improvement.

  • PDF

The Structure and the Implementation of the IEEE 802.11 MAC Protocol (IEEE 802.11 매체 제어 프로토콜 구조 및 구현)

  • 김지훈;안동랑;이동욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.492-499
    • /
    • 2003
  • This paper presents the analysis and the implementation of the asynchronous communication portion of the IEEE 802.11 MAC protocol. We have used PRISM2 chipsets from INTERSIL to build baseband, IF, and RF parts and PCI controller from PLX to interface LLC Layer. We have implemented DCF(Distributed Coordination Function) service using CSMA/CA(Carrier Sense Multiple Access with Collision Acoidance) with backoff algorithm and RTS/CTS protocol. Also, we have implemented TSF(Timing Synchronization Function) which can be used for power management frequency hop synchronization, and other management function. This study can be used as a reference for the MAC protocol implementation and MAC controller design in very high speed wireless LAN which complies with the IEEE 802.11 standard.

Development of Biped Walking Robot and Its Swing Motion (이족 보형로봇 개발과 그네 운동)

  • Park, Seong-Hoon;Kim, Jee-Hong;Yi, Soo-Yeong;Chong, Kil-To;Sung, Young-Whee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2411-2413
    • /
    • 2003
  • A new small humanoid robot system is developed in this paper. The humanoid robot has total 20 DOFs : 6 DOFs in each legs, 3 DOFs in each arms, and 2 DOFs in head, 34cms in height, and 2kgs in weight. The robot has the following characteristics: (1) PDA as host controller (2) network-based joint controller (3) wireless camera attached in robot's head (4) mechanism design by CATIA and high speed laser prototyping (5) graphic MMI(Man-Machine Interface) utilizing the CATIA data. By using ADXL inclination sensor, we implement the rope swing with the robot leg motion as well as walking.

  • PDF

A Low Jitter and Fast Locking Phase-Lock Loop with Adaptive Bandwidth Controller

  • Song Youn-Gui;Choi Young-Shig
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • This paper presents the analog adaptive phase-locked loop (PLL) architecture with a new adaptive bandwidth controller to reduce locking time and minimize jitter in PLL output for wireless communication. It adaptively controls the loop bandwidth according to the locking status. When the phase error is large, the PLL increases the loop bandwidth and reduces locking time. When the phase error is small, the PLL decreases the loop bandwidth and minimizes output jitters. The adaptive bandwidth control is implemented by controlling charge pump current depending on the locking status. A 1.28-GHz CMOS phase-locked loop with adaptive bandwidth control is designed with 0.35 $mu$m CMOS technology. It is simulated by HSPICE and achieves the primary reference sidebands at the output of the VCO are approximately -80dBc.

Design and Implementation of an Advanced Cattle Shed Management System using a Infrared Wireless Sensor nodes and Surveillance Camera (적외선 무선 센서 노드 및 무인감시카메라를 이용한 선진화된 축사 관리 시스템의 설계 및 구현)

  • Yoon, Min;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.22-34
    • /
    • 2012
  • In this paper, we design and implement an advanced cattle shed management system using a infrared wireless sensor nodes and surveillance camera. Our system provides three main capabilities, such as 24-hours cattle shed monitoring, trespassing detection, automatic control of cattle shed. For this, our system can monitor cattle shed as well as the condition of cows/bulls for 24 hours per day by using surveillance cameras. Our system also can detect intruders inside the cattle shed by using infrared wireless sensor nodes. In addition, our system can control the power of electric equipments in the cattle shed by using a power controller. Finally, we combine the three components into a system by using a smartphone application program and verify the effectiveness of our system by a testbed.

Design and analysis of RF-DC power conversion circuit (무선 전력변환장치의 전력변환 회로에 대한 설계 및 분석)

  • Kim, Yong-Sang;Im, Sang-Uk;Lee, Yong-Je;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.35-42
    • /
    • 2003
  • We have studied DC energy conversion of RF card by wireless communication. In order to attain an objective, it used the system which is a Rectenna. The main purpose of energy conversion system is the operation of the circuits at RF-ID system. The proposed RF-ID system is a lot classified with the reader and tag. Reader is a kind of the base station role supporting RF energy. And priority tag convert RF energy from the reader it was delivered with a wireless to DC energy. The energy which is converted like Tag. It transmits to the reader characteristic ID of each card. The tag is mainly divided into rectifier, power module, memory and controller. The FRAM maintains the data like a ROM in no-power situation. And the advantage is a low power element compared with other EEPROM. There are two considerations, when RF energy is converted into DC source by wireless. One is energy amount supported from the reader, the other is high power efficiency. This paper presents a study of simulation and experiments on the RF-DC conversion circuit in tag by the power efficiency concentrated.

  • PDF