• Title/Summary/Keyword: Wireless Charge

Search Result 103, Processing Time 0.032 seconds

Radio Resource Scheduling Approach For Femtocell Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.394-400
    • /
    • 2022
  • The radio resources available in a wireless network system are limited. Therefor, job of managing resources is not easy task. Because the resources are shared among the UEs that are connected, the process of assigning resources must be carefully controlled. The packet scheduler in an LTE network is in charge of allocating resources to the user equipment (UE). Femtocells networks are being considered as a promising solution for poor channel performance for mulitple environments. The implementation of femtocells into a macrocell (traditional base station) would boost the capacities of the cellular network. To increase femtocells network capacity, a reliable Packet Scheduler mechanism should be implemented. The Packet Scheduler technique is introduced in this paper to maximize capacity of the network while maintaining fairness among UEs. The proposed solution operates in a manner consistent with this principle. An analysis of the proposed scheme's performance is conducted using a computer simulation. The results reveal that it outperforms the well-known PF scheduler in terms of cell throughput and average throughput of UEs.

Novel Two-Level Randomized Sector-based Routing to Maintain Source Location Privacy in WSN for IoT

  • Jainulabudeen, A.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.285-291
    • /
    • 2022
  • WSN is the major component for information transfer in IoT environments. Source Location Privacy (SLP) has attracted attention in WSN environments. Effective SLP can avoid adversaries to backtrack and capture source nodes. This work presents a Two-Level Randomized Sector-based Routing (TLRSR) model to ensure SLP in wireless environments. Sector creation is the initial process, where the nodes in the network are grouped into defined sectors. The first level routing process identifies sector-based route to the destination node, which is performed by Ant Colony Optimization (ACO). The second level performs route extraction, which identifies the actual nodes for transmission. The route extraction is randomized and is performed using Simulated Annealing. This process is distributed between the nodes, hence ensures even charge depletion across the network. Randomized node selection process ensures SLP and also avoids depletion of certain specific nodes, resulting in increased network lifetime. Experiments and comparisons indicate faster route detection and optimal paths by the TLRSR model.

Design of Air-cooling System Using Thermoelectric Element on BTMS (BTMS에서 열전소자를 이용한 공랭식 냉각 시스템 설계)

  • KyeongMin Kim;DaeKi Hong;DaeWon Moon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.76-84
    • /
    • 2024
  • This paper proposes a method of improving cooling efficiency by applying a Peltier Element to a heat pipe of an air-cooled cooling system of a Battery Thermal Management System for high-speed cooling of a vehicle battery cell. In addition, when the temperature sensor detects the heat generation of the battery cell, the Peltier Element and cooler can be operated to quickly reduce the temperature of the cell. For optimal thermal management, we built an ATmega128A-based Battery Thermal Management System and used KiCAD tool to model and design the cooling system structure. Finally, the experiment verified the high efficiency improvement of cooling performance by comparing the difference between cooling efficiency and cooling performance at room temperature over time for vehicles adopting the existing air cooling method.

  • PDF

Fractional-N PLL Frequency Synthesizer Design (Fractional-N PLL (Phase-Locked Loop) 주파수 합성기 설계)

  • Kim Sun-Cheo;Won Hee-Seok;Kim Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.35-40
    • /
    • 2005
  • This paper proposes a fractional-N phase-locked loop (PLL) frequency synthesizer using the 3rd order ${\Delta}{\sum}$ modulator for 900MHz medium speed wireless link. The LC voltage-controlled oscillator (VCO) is used for the good phase noise property. To reduce the lock-in time, a charge pump has been developed to control the pumping current according to the frequency steps and the reference frequency is increased up to 3MHz. A 36/37 fractional-N divider is used to increase the reference frequency of the phase frequency detector (PFD) and to reduce the minimum frequency step simultaneously. A 3rd order ${\Delta}{\sum}$ modulator has been developed to reduce the fractional spur VCO, Divider by 8 Prescaler, PFD and Charge pump have been developed with 0.25um CMOS, and the fractional-N divider and the third order ${\Delta}{\sum}$ modulator have been designed with the VHDL code, and they are implemented through the FPGA board of the Xilinx Spartan2E. The measured results show that the output power of the PLL is about -lldBm and the phase noise is -77.75dBc/Hz at 100kHz offset frequency. The minimum frequency step and the maximum lock-in time are 10kHz and around 800us for the maximum frequency change of 10MHz, respectively.

Four Channel Step Up DC-DC Converter for Capacitive SP4T RF MEMS Switch Application (정전 용량형 SP4T RF MEMS 스위치 구동용 4채널 승압 DC-DC 컨버터)

  • Jang, Yeon-Su;Kim, Hyeon-Cheol;Kim, Su-Hwan;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This paper presents a step up four channel DC-DC converter using charge pump voltage doubler structure. Our goal is to design and implement DC-DC converter for capacitive SP4T RF MEMS switch in front end module in wireless transceiver system. Charge pump structure is small and consume low power 3.3V input voltage is boosted by DC-DC Converter to $11.3{\pm}0.1V$, $12.4{\pm}0.1V$, $14.1{\pm}0.2V$ output voltage With 10MHz switching frequency. By using voltage level shifter structure, output of DC-DC converter is selected by 3.3V four channel selection signals and transferred to capacitive MEMS devices. External passive devices are not used for driving DC-DC converter. The total chip area is $2.8{\times}2.1mm^2$ including pads and the power consumption is 7.52mW, 7.82mW, 8.61mW.

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.

A Study on Improving the Billing System of the Wireless Internet Service (무선인터넷 서비스의 과금체계 개선에 관한 연구)

  • Min Gyeongju;Hong Jaehwan;Nam Sangsig;Kim Jeongho
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.597-602
    • /
    • 2005
  • In this study, file size for measurement and the service system's billing data were submitted to a comparative analysis by performing a verification test on the billing system of three major mobile communication services providers, based on the wireless Internet service packet. As shown in the result of the verification test, there were some differences in the billing data due to transmission overhead, according to the network quality that is affected by the wireless environment of mobile operators. Consequently, the packet analysis system was proposed as a means of applying consistent packet billing to all service providers being compared. If the packet analysis system is added to supplement the current billing system various user requirements can be met. Billing by Packet among mobile operators and differentiated billing based on the content value are available, since the packet data can be extracted through protocol analysis by service, and it can be classified by content tape through traffic data analysis. Furthermore, customer's needs can be satisfied who request more information on the detailed usage, and more flexible and diverse billing policies can be supported like application of charging conditions to the non-charging packet handling. All these services are expected to contribute to the popularization of the wireless Internet service, since user complaints about the service charge could be reduced.

Efficient Content Sharing using the Selection of Minimum Forwarding Peers in an Ad Hoc Network (최소의 Forwarding Peer 선택을 통한 애드 혹 네트워크에서의 효율적 콘텐츠 분배 방법)

  • Kang, Seung-Seok
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.165-173
    • /
    • 2009
  • Recent portable devices are so versatile that they have multiple communication channels and play several multimedia formats. Especially, many services are under development for users who connect Internet or nearby devices via WWAN (Wireless Wide Area Network) and/or WLAN (Wireless LAN). In case of paying the telecommunication cost proportional to the amount of data downloaded, it is necessary to reduce the cost by constructing a special ad hoc network in which each participating peer downloads a specific portion of the want-to-be-shared content over the payable WWAN channel and exchanges the remaining portion with other peers using the cost-free WLAN channel. If all peers participate in forwarding packets, some transmissions are redundant which results in the unnecessary consumption of bandwidth as well as the delayed content distribution time. In order to reduce the redundant transmission, this paper proposes both the excluding method which discourages some peers not to forward redundant packets, and the minimum cover set method in which only the minimum number of peers are in charge of forwarding packets. These two methods obviate redundant packet forwarding, and result in reduction of content distribution time by up to around 29%.

Electric Vehicle Wireless Charging Control Module EMI Radiated Noise Reduction Design Study (전기차 무선충전컨트롤 모듈 EMI 방사성 잡음 저감에 관한 설계 연구)

  • Seungmo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.104-108
    • /
    • 2023
  • Because of recent expansion of the electric car market. it is highly growing that should be supplemented its performance and safely issue. The EMI problem due to the interlocking of electrical components that causes various safety problems such as fire in electric vehicles is emerging every time. We strive to achieve optimal charging efficiency by combining various technologies and reduce radioactive noise among the EMI noise of a weirless charging control module, one of the important parts of an electric vehicle was designed and tested. In order to analyze the EMI problems occurring in the wireless charging control module, the optimized wireless charging control module by applying the optimization design technology by learning the accumulated test data for critical factors by utilizing the Python-based script function in the Ansys simulation tool. It showed an EMI noise improvement effect of 25 dBu V/m compared to the charge control module. These results not only contribute to the development of a more stable and reliable weirless charging function in electric vehicles, but also increase the usability and efficiency of electric vehicles. This allows electric vehicles to be more usable and efficient, making them an environmentally friendly alternative.

Design of a 960MHz CMOS PLL Frequency Synthesizer with Quadrature LC VCO (960MHz Quadrature LC VCO를 이용한 CMOS PLL 주파수 합성기 설계)

  • Kim, Shin-Woong;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.61-67
    • /
    • 2009
  • This paper reports an Integer-N phase locked loop (PLL) frequency synthesizer which was implemented in a 250nm standard digital CMOS process for a UHF RFID wireless communication system. The main blocks of PLL have been designed including voltage controlled oscillator, phase frequency detector, and charge pump. The LC VCO has been used for a better noise property and low-power design. The source and drain juntions of PMOS transistors are used as the varactor diodes. The ADF4111 of Analog Device has been used for the external pre-scaler and N-divider to divide VCO frequency and a third order RC filter is designed for the loop filter. The measured results show that the RF output power is -13dBm with 50$\Omega$ load, the phase noise is -91.33dBc/Hz at 100KHz offset frequency, and the maximum lock-in time is less than 600us from 930MHz to 970MHz.