• Title/Summary/Keyword: Wire-mesh

Search Result 221, Processing Time 0.025 seconds

AN IMPROVED ELECTRICAL-CONDUCTANCE SENSOR FOR VOID-FRACTION MEASUREMENT IN A HORIZONTAL PIPE

  • KO, MIN SEOK;LEE, BO AN;WON, WOO YOUN;LEE, YEON GUN;JERNG, DONG WOOK;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.804-813
    • /
    • 2015
  • The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor.

Experimental investigation on bubble behaviors in a water pool using the venturi scrubbing nozzle

  • Choi, Yu Jung;Kam, Dong Hoon;Papadopoulos, Petros;Lind, Terttaliisa;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1756-1768
    • /
    • 2021
  • The containment filtered venting system (CFVS) filters the atmosphere of the containment building and discharges a part of it to the outside environment to prevent containment overpressure during severe accidents. The Korean CFVS has a tank that filters fission products from the containment atmosphere by pool scrubbing, which is the primary decontamination process; however, prediction of its performance has been done based on researches conducted under mild conditions than those of severe accidents. Bubble behavior in a pool is a key parameter of pool scrubbing. Therefore, the bubble behavior in the pool was analyzed under various injection flow rates observed at the venturi nozzles used in the Korean CFVS using a wire-mesh sensor. Based on the experimental results, void fraction model was modified using the existing correlation, and a new bubble size prediction model was developed. The modified void fraction model agreed well with the obtained experimental data. However, the newly developed bubble size prediction model showed different results to those established in previous studies because the venturi nozzle diameter considered in this study was larger than those in previous studies. Therefore, this is the first model that reflects actual design of a venturi scrubbing nozzle.

En-masse retraction with a preformed nickel-titanium and stainless steel archwire assembly and temporary skeletal anchorage devices without posterior bonding

  • Jee, Jeong-Hyun;Ahn, Hyo-Won;Seo, Kyung-Won;Kim, Seong-Hun;Kook, Yoon-Ah;Chung, Kyu-Rhim;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.44 no.5
    • /
    • pp.236-245
    • /
    • 2014
  • Objective: To evaluate the therapeutic effects of a preformed assembly of nickel-titanium (NiTi) and stainless steel (SS) archwires (preformed C-wire) combined with temporary skeletal anchorage devices (TSADs) as the sole source of anchorage and to compare these effects with those of a SS version of C-wire (conventional C-wire) for en-masse retraction. Methods: Thirty-one adult female patients with skeletal Class I or II dentoalveolar protrusion, mild-to-moderate anterior crowding (3.0-6.0 mm), and stable Class I posterior occlusion were divided into conventional (n = 15) and preformed (n = 16) C-wire groups. All subjects underwent first premolar extractions and en-masse retraction with preadjusted edgewise anterior brackets, the assigned C-wire, and maxillary C-tubes or C-implants; bonded mesh-tube appliances were used in the mandibular dentition. Differences in pretreatment and post-retraction measurements of skeletal, dental, and soft-tissue cephalometric variables were statistically analyzed. Results: Both groups showed full retraction of the maxillary anterior teeth by controlled tipping and space closure without altered posterior occlusion. However, the preformed C-wire group had a shorter retraction period (by 3.2 months). Furthermore, the maxillary molars in this group showed no significant mesialization, mesial tipping, or extrusion; some mesialization and mesial tipping occurred in the conventional C-wire group. Conclusions: Preformed C-wires combined with maxillary TSADs enable simultaneous leveling and space closure from the beginning of the treatment without maxillary posterior bonding. This allows for faster treatment of dentoalveolar protrusion without unwanted side effects, when compared with conventional C-wire, evidencing its clinical expediency.

Channel Allocation in Multi-radio Multi-channel Wireless Mesh Networks: A Categorized Survey

  • Iqbal, Saleem;Abdullah, Abdul Hanan;Hussain, Khalid;Ahsan, Faraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1642-1661
    • /
    • 2015
  • Wireless mesh networks are a special type of broadcast networks which cover the qualifications of both ad-hoc as well as infrastructure mode networks. These networks offer connectivity to the last mile through hop to hop communication and by comparatively reducing the cost of infrastructure in terms of wire and hardware. Channel assignment has always been the focused area for such networks specifically when using non-overlapping channels and sharing radio frequency spectrum while using multiple radios. It has always been a challenge for mesh network on impartial utilization of the resources (channels), with the increase in users. The rational utilization of multiple channels and multiple radios, not only increases the overall throughput, capacity and scalability, but also creates significant complexities for channel assignment methods. For a better understanding of research challenges, this paper discusses heuristic methods, measurements and channel utilization applications and also examines various researches that yield to overcome this problem. Finally, we highlight prospective directions of research.

The Targeting for Users Data Service of 3D-mesh contents (맞춤형 Targeting 3차윈 컨텐츠 Data 서비스)

  • Jung Jong-Jin;Lee Jong-Sul;Lim Tae-Bum;Lee Seok-Pil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.83-86
    • /
    • 2003
  • With the opening of digital broadcast services and development of wire/wireless Internet, the current multimedia broadcasting is provided for has various services. The user will be provided lots of various content through the various channel and media. Content provider and consumer want the various service using content with the better quality which is fit to user preference. For transmitting this content in the limited transmission channel capacity, it needs to transmit the highly compressed content which user wants. The content of 3D mesh model-based on MPEG-4 enables the various content service that provides the lower capacity and the better quality, and Targeting service enables just provide the contents that user more wants and likes. The adaption of Java application program and 3D program can provide the content service utilizing 3D mesh model, so content provider and consumer can share the more information about the content. This paper has presented the study on the targeting service using compression of 3D mesh model-based on MPEG-4 and the adaptation of Java application program using it

  • PDF

Geometric LiveWire and Geometric LiveLane for 3D Meshes (삼차원 메쉬에 대한 기하학 라이브와이어와 기하학 라이브레인)

  • Yoo Kwan-Hee
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.13-22
    • /
    • 2005
  • Similarly to the edges defined in a 2D image, we can define the geometric features representing the boundary of the distinctive parts appearing on 3D meshes. The geometric features have been used as basic primitives in several applications such as mesh simplification, mesh deformation, and mesh editing. In this paper, we propose geometric livewire and geometric livelane for extracting geometric features in a 3D mesh, which are the extentions of livewire and livelane methods in images. In these methods, approximate curvatures are adopted to represent the geometric features in a 3D mesh and the 3D mesh itself is represented as a weighted directed graph in which cost functions are defined for the weights of edges. Using a well-known shortest path finding algorithm in the weighted directed graph, we extracted geometric features in the 3D mesh among points selected by a user. In this paper, we also visualize the results obtained from applying the techniques to extracting geometric features in the general meshes modeled after human faces, cows, shoes, and single teeth.

A COMPARATIVE STUDY ON THE SEVERAL METAL REINFORCEMENT METHODS OF MAXILLARY COMPLETE ACRYLIC RESIN DENTURE BASE (수종의 상악 총의치수지상 금속보강법에 관한 비교연구)

  • Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.363-372
    • /
    • 1996
  • A common site of fracture in maxillary complete denture is on the anteroposterior midline that coincides with the notch for relief of the labial frenum. Various approaches to reduce the incidence of this type of fracture have been suggested. The most widely used technique is the reinforcement of acrylic resin denture base with several solid metal forms. But few comparative studies on the efficacy of metal reinforcements have been reported. This study was conducted to compare reinforcing effects of commonly available metal reinforcements, which include wire, metal mesh embedded in the denture base and metal plate affixed to the impression surface of denture base by silicoating technique. This was load on the posterior. The strain gauges were oriented perpendicular to the anteroposterior midline of maxillary polished denture surface at one labial and the four palatal sites Non-renforced denture was used as control. The results were as follows : 1. In the non-reinforced denture group, only tensile strains on the palatal polished surface were observed. The tensile strains decreased in the order of incisive papilla, posterior denture border area, mid palatal area and rugae area. Compressive strain was observed on the labial polished surface. 2. As compared with the non-reinforced denture group, the metal plate or the metal mesh reinforced denture groups showed reduced palatal tensile strains,and the metal mesh reinforcement had a better reinforcing effect than the metal plate. But both reinforced denture groups showed no difference in the amount of compressive strain on the labial polished surface when compared to the non-reinforced denture group. 3. The metal wire positioned just above the labial notch decreased the compressive strain on the labial polished surface. But the presence of metal wires in the palatal polished surface caused increase in tensile strains in the area.

  • PDF

Control of Impinging Jet Heat Transfer Using Mesh Screens (메쉬 스크린을 이용한 충돌제트 열전달 제어에 관한 연구)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.722-730
    • /
    • 2001
  • The local heat transfer of an axisymmetric submerged air jet impinging on a heated flat plate is investigated experimentally with the variation of mesh-screen solidity. The screen installed in front of the nozzle exit modifies the flow structure and local heat transfer characteristics. The mean velocity and turbulence intensity profiles of streamwise velocity component are measured using a hot-wire anemometry. The temperature distribution on the heated flat surface is measured with thermocouples. The smoke-wire flow visualization technique was employed to understand the near-field flow structure qualitatively for different mesh screens. Large-scale toroidal vortices and high turbulence intensity enhance the heat transfer rate in the stagnation region. For a higher solidity, turbulence intensity become higher which increases the local heat transfer at small nozzle-to-plate spacings such as L/D<6. The local and average Nusselt numbers of impinging jet from the $\sigma$(sub)s=0.83 screen at L/D=2 are about 5.6∼7.5% and 7.1% larger than those for the case of no screen, respectively. For the nozzle-to-plate spacings larger than 6, however, the turbulence intensities for all tested screens approach to an asymptotic curve and the mean velocity along the jet centerline decreases monotonically. As the nozzle-to-plat spacing increases for high solidity screens, the heat transfer rate decreases due to the reduction in turbulence intensity and jet momentum.

A Study on Test Method for Performance Evaluation of Rockfall Protection Fence (Post) (낙석방지울타리(지주) 성능평가를 위한 시험방법 연구)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.2
    • /
    • pp.5-12
    • /
    • 2022
  • In this study, a field test was conducted to present a test method for performance evaluation of a rock fall prevention fence, centering on the vertical drop test among the existing test methods of the rock fall prevention fence. A test to determine the support capacity of a rockfall prevention fence in Korea is usually conducted using a combination of wire mesh, poles, and wire rope, and the location of the impact of falling rocks has been conducted centered on the center of the wire mesh. However, in the case of domestic papers and test data, there is no data on direct hit of post. Therefore, the amount of displacement and weak section were analyzed when the impact on 100kJ class rock energy was hit on the post, centering on the Rockfall Protection fence (highway type No. 2).

Analysis of Compressive Characteristics of Wire-woven Bulk Kagome (Wire-woven Bulk Kagome의 압축 특성 분석)

  • Lee, Byung-Kon;Choi, Ji-Eun;Kang, Ki-Ju;Jeon, In-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Periodic cellular metals (PCMs) are actively being investigated because of their excellent specific strength and stiffness, and multi-functionality such as a heat disperse structure bearing external loading. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling and lower anisotropy than other truss PCMs. In this paper, the out-of-plane compressive responses of the WBK specimens have been measured, theoretically predicted and numerically analyzed. Three specimens of two-layered WBK are fabricated and tested for measuring the responses. The peak stress of compressive behavior and effective elastic modulus are predicted based on the equilibrium equation and elastic energy conservation. Moreover, the structure of the specimen is modeled using the commercial mesh generation code, PATRAN and the finite element analysis for the model under the compression is carried out using the commercial FE code, ABAQUS. Finally, the obtained results are compared with each other to analyze the compressive characteristics of Wire-woven Bulk Kagome (WBK).