DOI QR코드

DOI QR Code

Geometric LiveWire and Geometric LiveLane for 3D Meshes

삼차원 메쉬에 대한 기하학 라이브와이어와 기하학 라이브레인

  • 유관희 (충북대학교 컴퓨터교육과 및 정보산업공학과)
  • Published : 2005.02.01

Abstract

Similarly to the edges defined in a 2D image, we can define the geometric features representing the boundary of the distinctive parts appearing on 3D meshes. The geometric features have been used as basic primitives in several applications such as mesh simplification, mesh deformation, and mesh editing. In this paper, we propose geometric livewire and geometric livelane for extracting geometric features in a 3D mesh, which are the extentions of livewire and livelane methods in images. In these methods, approximate curvatures are adopted to represent the geometric features in a 3D mesh and the 3D mesh itself is represented as a weighted directed graph in which cost functions are defined for the weights of edges. Using a well-known shortest path finding algorithm in the weighted directed graph, we extracted geometric features in the 3D mesh among points selected by a user. In this paper, we also visualize the results obtained from applying the techniques to extracting geometric features in the general meshes modeled after human faces, cows, shoes, and single teeth.

이차원 영상에서 정의된 에지와 유사하게 삼차원 메쉬에서도 주요 부위의 경계를 표현하는 기하학 특징을 정의할 수 있다. 삼차원 메쉬에서 기하학 특징은 메쉬 단순화, 메쉬 변형과 메쉬 편집 등과 같은 여러 응용에 기본적인 항목으로 사용되고 있다. 본 논문에서는 삼차원 메쉬의 기학적 특징을 효과적으로 찾기 위하여 이차원 영상의 라이브와이어와 라이브레인 기법을 삼차원 메쉬로 확장한 기하학 라이브와이어와 기하학하 라이브레인 기법을 제안한다. 제안된 기법에서는 메쉬의 기하학 특징을 나타내기 위하여 근사곡률을 사용하였고 메쉬 그 자체를 정의된 비용함수를 에지의 가중치고 가지는 가중치 방향그래프로 나타내었다. 그리고 만들어진 가중치 방향그래프에 대해 잘 알려진 최단경로 탐색 알고리즘을 이용하여 사용자에 의해 지정된 점들 사이에 존재하는 삼차원 메쉬에서의 기하학 특징을 추출하였다. 본 논문에서는 사람 얼굴, 소, 신발과 치어 메쉬 모델에 나타나는 기하학 특징을 추출하기 위하여 제안한 기법을 적용하여 얻어진 결과를 가시화한다.

Keywords

References

  1. P. Alliez, D. Cohen-Steiner, B. Levoy and M. Desbrun, 'Anisotropic polygonal remeshes,' ACM Computer Graphics (Proc. of SIGGRAPH '03), 2003, pp.485-493 https://doi.org/10.1145/1201775.882296
  2. D. Hearn and M.P. Baker, Computer Graphics, Prentice-Hall, 1994
  3. A. X. Falcao, et. al, 'User-steered image segmentation paradigms: livewire and livclane,' Graphical Models and Image Processing, Vol. 50, 1998, pp.223-260
  4. A. X. Falcao, et al, 'An Ultra-fast user-steered image segmentation paradigm: live wire on the fly,' IEEE Tr. on Medical Imaging, Vol.19, No.1, 2000, pp.55-62 https://doi.org/10.1109/42.832960
  5. M.S. Floater, 'Parameterization and smooth approximation of surface triangulation,' Computer-Aided Geometric Design, Vol.4, No.3, 1997, pp.231-250 https://doi.org/10.1016/S0167-8396(96)00031-3
  6. M. Garland and P.S. Hecbert, 'Surface simplification using quadric error metric,' ACM Computer Graphics (Proc. of SIGGRAPH '97), 1997, pp.209-216 https://doi.org/10.1145/258734.258849
  7. X. Gu, S. Gortler and H. Hoppe, 'Geometry images,' ACM Computer Graphics (Proc. of SIGGRAPH '02), 2002, pp.355-361 https://doi.org/10.1145/566570.566589
  8. H. W. Kang and S. Y. Shin, 'Enhanced lane: interactive image segmentation by incremental path map construction,' Graphical Models, Vol.64, No.5, 2002, pp.282-303 https://doi.org/10.1016/S1077-3169(02)00007-2
  9. M. Kass, A. Witkin and D. Terzopoulos 'Snakes, active contour models,' International Journal of Computer Vision, Vol.1, 1987, pp.321-331 https://doi.org/10.1007/BF00133570
  10. S.-J. Kim, S.-K. Kim and C.-H. Kim, 'Discrete differential error metric for surface simpliciation,' In Proceedings of Pacific Graphics 2002, pp. 276-283, Beijing, China, October 2002
  11. Y. Lee and S. Lee, Geometric snakes for triangular meshes, Computer Graphics Forum, Vol.21, No.3, 2002, pp.229-238 https://doi.org/10.1111/1467-8659.t01-1-00582
  12. M. Mantyla., Introduction to Solid Modeling, W.H. Freeman & Co, 1988
  13. E. Mortensen and W. A Barrett, 'Intelligent scissors for image composition,' ACM Computer Graphics (Proc. of SIGGRAPH '95), 1995, pp.191-198 https://doi.org/10.1145/218380.218442
  14. A. Rosenfeld and E. Johnston, 'Angle detection in digital curves,' IEEE Transactions on Computers, Vol.22, 1973, pp.875-878 https://doi.org/10.1109/TC.1973.5009188
  15. A.D.C. Smith, The Folding of the Human Brain: from Shape to Function, University of London, PhD Dissertations, 1999
  16. G. Turk, 'Re-tiling polygonal surfaces,' ACM Computer Graphics (Proc. of SIGGRAPH '92), Vol.26, No.2, 1992, pp.55-64 https://doi.org/10.1145/142920.134008
  17. J. Vorsatz, C. RossI, L. Kobbelt, and H. Seidel, 'Feature sensitive remeshing,' In Proc. of EUROGRAPHICS '01, 2001, pp.392-401 https://doi.org/10.1111/1467-8659.00532
  18. F. Yamaguchi, Curves and surfaces in Computer Aided Geometric Design, Springer-Berlag, 1988
  19. Y. H.-Yoo and J. S. Ha, 'Geometric snapping for 3d meshes,' Workshop on Computer Graphics and Geometric Modelling (Lecture Notes on Computer Science 3039),2004, pp.90-97