• Title/Summary/Keyword: Wire power transmission

Search Result 152, Processing Time 0.026 seconds

A Simulation of Lightning Faults Reducing Effects on the 154 kV Transmission Tower by Auxiliary Grounding (보조접지선 시공에 의한 송전선로의 내뢰성 향상효과 모의)

  • Kwak, Joo-Sik;Shim, Jeong-Woon;Shim, Eung-Bo;Choi, Jong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1843-1846
    • /
    • 1997
  • This paper describes the fault reducing effects of the 154 kV transmission tower by auxiliary grounding from the top of the tower to ground. The grounding surge impedance of the auxiliary grounding system is calculated by CDEGS(:Current Distribution Electromagnetic Interference Grounding and Soil Structure Analysis), and the critical lightning back flashover current and arcing horn dynamic characteristics are simulated by EMTP/TACS(:Electromagnetic Transient Program/Transient Analysis of Control Systems). The calculated results of total LFOR(Lightning Flashover Rate) shows that the LFOR can be reduced from 5.2(count/100km. year) to 3.4 by auxiliary grounding on the 154 kV transmission tower with one ground wire shielding system.

  • PDF

Development of the 154kV optical fiber incorporated power cable (154kV급 전력-광복합케이블의 개발)

  • Ryu, Jae-Kyu;Yoo, Sung-Jong;Jeon, Seung-Ik;Jo, Jin-Chul;Choi, Bong-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1639-1641
    • /
    • 1997
  • In this study, We developed the 154kV optical fiber incorporated power cable which is combined optical fibers with conventional 154kV power cable. Also, we developed optical unit that optical fiber is inserted in stainless tube. The optical unit was tested, and we got good results enough to safe optical fibers. Also we put the optical fiber incorporated power cable to the test of electrical characteristics and optical characteristics, we knew that the electrical characteristics were the same characteristics as conventional 154kV power cable and the transmission loss change was almost zero. The method of optical unit connection was examined.

  • PDF

A Study on the Ultra-high Voltage Oil Filed Cable Joint (초초고압용 OF 케이블 접속함의 국산화를 위한 연구)

  • Lee, S.K.;Jeon, S.I.;Park, W.K.;Kim, W.J.;Park, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1825-1827
    • /
    • 1996
  • In this study, the Joint of 345kV OF $1C{\times}2000mm^2$ cable was developed to keep up with the trends that need higher-voltage & capacity underground transmission line. The type of joint developed was based on the two kinds of models that have had a good reliability internationally. The mechnic and electric characteristics of the sample specimen was managed in detail when it was manufactured and estimated. Especially, in order to prove the reliability of usage for 30 years, the method of long term aging test was studied. As a result of test, we knew that the joint developed had a good performance. From this study, it can be thought that future ultra-high voltage underground transmission line could be constructed by domestic technology.

  • PDF

Current Sharing and AC Loss of a Multi-Layer HTS Power Transmission Cable with Variable Cable Length (다층 고온초전도 송전케이블의 길이에 따른 층별 전류분류 및 교류손실 계산)

  • Lee, Ji-Kwang;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire. One important parameter in HTS cable design is transport current sharing because it is related with current transmission capacity and loss. In this paper, we calculate self inductances of each layer and mutual inductances between two layers from magnetic field energy, and current sharing of each layer for 4-layer cable using the electric circuit model which contain inductance and resistance (by joint and AC loss). Also, transport current losses which are calculated by monoblock model and Norris equation are compared. As a results, outer layer has always larger transport current than inner layer, and current capacity of each layer is largely influenced by resistance per unit cable length. As a conclusion, for high current uniformity and low AC loss, we have to decrease inductances themselves or those differences.

  • PDF

A simulation of Lightning Performance of the 154 kV Transmission Line with the Surge Arrester Installation (154 kV 송전선로에 피뢰기 설치시 내뢰성 향상효과 모의)

  • Shim, Eung-Bo;Woo, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1642-1644
    • /
    • 1997
  • The simulation study of lightning faults reducing effects by the installation of surge arresters on the 154 kV transmission line is stated here. For the purpose of detailed simulation of arcing horn, a flashover model with dynamic characteristics of arcing horn gap was represented as a non-linear inductance which is controlled by EMTP/TACS(Electromagnetic Transient Program/fransient Analysis of Control Systems) switches. The back flashover inducing current was increased from 50 kA to 88 kA by the installation of surge arresters on the transmission line which has one ground wire and 20 ohms of tower footing resistances. The great advantage of surge arrester installation on one circuit of the double circuit transmission line is to prevent the simultaneous back flashover up to 190 kA.

  • PDF

Analysis of Current Distribution of HTSC Power Cable Considering Shield Layer (차폐층을 고려한 고온초전도 전력 케이블의 전류분류 해석)

  • Lee, Jong-Hwa;Lim, Sung-Hun;Ko, Seok-Cheol;Park, Chung-Ryul;Han, Byoung-Sung;Hwang, Si-Dole
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.12-14
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of import ant parameters in high-temperature superconduting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and AC loss. In this paper, the transport current distribution at conducting layers was investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer and compared with the case of without shield layer. The transport current distribution due to of the contact resistance and the pitch was improved in the case of HTSC power cable with shield layer from the analysis.

  • PDF

Analysis of Current Distribution of Multi-Layer HTSC Power Cable dut to Pitch length and winding direction (피치길이와 결선방향에 따른 다층 고온초전도 전력케이블의 전류분류 분석)

  • Lee Jong-Hwa;Lim Sung-Hun;Ko Seokcheol;Park Chung-Ryul;Han Byoung-Sung;Hwang Si Dole
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1133-1135
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of important parameters in high-temperature superconducting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and ac loss. In this paper, the transport current and magnetic field distributions at conducting layers were investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer. The transport current distribution due to the pitch length and winding direction was improved in case of HTSC power cable with shield layer.

  • PDF

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

  • Jung, Chae-Kyun;Jung, Yeon-Ha;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.628-634
    • /
    • 2014
  • This paper investigates the transient characteristics of grounding systems used in under-ground distribution power cables. Recently, two kinds of grounding system are used for underground distribution cables in Korea. The first one is conventional multi-point grounding system, the other is newly proposed non-bundled common grounding system. The non-bundled common grounding system has an advantage the decreasing the power loss due to decrease of the shield circulation current. In this paper, the lightning overvoltage induced in neutral wire (in case of non-bundled common grounding system, overvoltage between opened neural wires and grounding in each phase) of these two kinds of grounding systems are estimated and compared by field tests and EMTP simulations. The EMTP simulation methods are firstly verified by comparison of measurement and simulation. Finally, the insulation level against lightning is expected by EMTP simulation results using verified model.

Analysis of Lightning Overvoltage on the Underground Power Cable at the Striking of Lightning Surge to the Combined Transmission Line (혼합송전선로에 뇌서지침입시 지중송전선로에서의 뇌과전압 해석)

  • Kim, Nam-Yeol;Lee, Jong-Beom;Jang, Seong-Hwan;Gang, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.502-509
    • /
    • 2002
  • In the analysis of lightning surges, transmission towers are usually simulated by ATPDraw. The modeling of transmission towers is an essential part of the traveling wave analysis of lightning surges in transmission lines. The tower model is applied to the 154kV transmission tower of which surge performance characteristics are measured Tower surge response is computed using nonuniform, single-phase line models for both transmission tower and ground wire. The overvoltage will effect to the underground transmission line. The underground cable is combined by duct and trefoil type, and the each arrester is placed on the leading-in tube and outgoing tube. This paper analyzed the effect of lightning overvoltage on the underground cable system.

Transmission Lines Rights-of-Way Mapping Using a Low-cost Drone Photogrammetry

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.63-70
    • /
    • 2019
  • Electric transmission towers are facilities to transport electrical power from a plant to an electrical substation. The towers are connected using wires considering the wire tension and the clearance from the ground or nearby objects. The wires are installed on a rights-of-way that is a strip of land used by electrical utilities to maintain the transmission line facilities. Trees and plants around transmission lines must be managed to keep the operation of these lines safe and reliable. This study proposed the use of a low-cost drone photogrammetry for the transmission line rights-of-way mapping. Aerial photogrammetry is carried out to generate a dense point cloud around the transmission lines from which a DSM (Digital Surface Model) and DTM (Digital Terrain Model) are created. The lines and nearby objects are separated using nDSM (normalized Digital Surface Model) and the noises are suppressed in the multiple image space for the geospatial analysis. The experimental result with drone images over two spans of transmission lines on a mountain area showed that the proposed method successfully generate the rights-of-way map with hazard nearby objects.