• Title/Summary/Keyword: Winkler foundation

Search Result 293, Processing Time 0.023 seconds

Analytic Study on Rigid Beam Resting on Winkler Foundation (Winkler 지반상에 놓인 강성보의 해석)

  • Lee, Seung-Hyun;Kwon, Oh-Soon;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5300-5305
    • /
    • 2011
  • Displacement, contact pressure and moment which are developed in rigid beam on the Winkler foundation and 2 parameter Winkler foundation were derived. It can be seen that moment distribution along with rigid beam on the Winkler foundation are regardless of spring constant and the moments calculated from assuming linear spring constant were greater than those from assuming constant spring constant. Simple calculation revealed that the maximum moment developed in the rigid beam on the 2 parameter Winkler foundation was larger than that developed in the rigid beam on the Winkler foundation.

Stability Analysis of Thin Plates on Inhomogeneous Pasternak foundation (비균질 Pasternak지반에 의해 지지된 박판의 안정 해석)

  • 이용수;김광서
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.401-411
    • /
    • 2001
  • This paper deals with the vibration analysis of the rectangular plates which are subjected to uniform in-plane stresses and supported on In-homogeneous Pasternak foundation. Two parametric foundation which Winkler foundation parameter and shear foundation parameter considered, is called by the Pasternak foundation. The values of Winkler foundation parameter of central and border zone of plate are chosen as k₁and k₂respectively, and the value of shear foundation is chosen as constant about all zone of plate. After composing global flexural stiffeness matrix, geometrical stiffeness matrix, mass matrix, and the stiffeness matrix of the Pasternak foundation, eigenvalue problems which are composed of these matrices are solved. The result shows that the shear foundation parameter must not be ignore when considering the stiffeness of foundation.

  • PDF

Analysis of Beam Resting on Hyperbolic Winkler Elastic Foundation by Differential Transformation (미분 변환법에 의한 쌍곡선형태 Winkler 탄성 지반상의 보 해석)

  • Shin, Yung-Jae;Yun, Jong-Hak;Jaun, Su-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1060-1065
    • /
    • 2002
  • In this paper, the numerical analysis of beam rest ing on hyperbolic Winkler elastic foundation by differential transformation is performed. Accordig to the change of parameter of hyperbolic Winkler elastic foundation, beam deformation is computed when the boundary conditions are clamped-clamped, pined-pined and clamped-free.

  • PDF

Analysis of Beam Resting on Hyperbolic Winkler Elastic Foundation by Differential Transformation (미분 변환법에 의한 쌍곡선형태 Winkler 탄성 지반상의 보 해석)

  • Shin, Young-Jae;Yun, Jong-Hak;Jaun, Su-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.402.2-402
    • /
    • 2002
  • In this paper, the numerical analysis of beam resting on hyperbolic Winkler elastic foundation by differential transformation is performed. Accordig to the change of parameter of hyperbolic Winkler elastic foundation, beam deformation is computed when the boundary conditions are clamped-clamped, pined-pined and clamped-free.

  • PDF

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Free Vibration Analysis of Thick Plate Subjected to In-plane Force on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓인 면내력을 받는 후판의 진동해석)

  • Lee, Yong Soo;Kim, Il Jung;Oh, Soog Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.291-298
    • /
    • 2003
  • Recently, as the size of buildings structure becomes large increases, their mat area of building structure is supported or by an inhomogeneous foundation. This paper presents a vibration analysis on thick plates subjected to in-plane force is presented in this paper. The rectangular plate is isotropic, homogeneous, and composed of a linearly elastic material. A vibration analysis of the rectangular thick plate iwas done by useing ofarectangular finite element with 8 nodes and 9 nodes. In this study, the foundation was idealized as a Pasternak foundation model. A Pasternak foundation haves a shear layer on Winkler's model, which idealizes the foundation as a vertical spring. In order tTo analysze the vibration of a plate supported on by an inhomogeneous Pasternak foundation, the value of the Winkler foundation parameter of the central and border zones of the plate awere chosen as WFP1 and WFP2. (fFigure 4.). The Winkler foundation parameter of WFP1 and WFP2 is varied from 0 to 10, $10^2$, and $10^3$ and the shear foundation parameters is were 0, 5, and 10. The ratio of the in-plane force to the critical load iwas applied as 0.4 to 0.8

Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads

  • Guler, K.;Celep, Z.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.699-712
    • /
    • 2005
  • The response of a plate-column system having five-degree-of-freedom supported by an elastic foundation and subjected to static lateral load, harmonic ground motion and earthquake motion is studied. Two Winkler foundation models are assumed: a conventional model which supports compression and tension and a tensionless model which supports compression only. The governing equations of the problem are obtained, solved numerically and the results are presented in figures to demonstrate the behavior of the system for various values of the system parameters comparatively for the conventional and the tensionless Winkler foundation models.

The Effect of Flexibility for the Offshore Wind Turbine System (해상풍력시스템의 거동 해석을 위한 지반의 연성효과 고려방안)

  • Choi, Changho;Han, Jintae;Cho, Samdeok;Jang, Youngeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.59-66
    • /
    • 2013
  • The foundation of offshore wind energy system is generally assumed to be fixed-ended in system analysis for the convenience of calculation and, correspondingly, it might lead a conservative design. If soil-foundation interaction get involved with the analysis, the system characteristics such as natural frequency, shear force, moment and displacement are expected to differ from those of fixed-ended case. In this study, the analysis have been conducted to identify how the response of offshore wind turbine varies upon considering the foundation flexibility with soil-foundation interaction. The model taking account of the flexibility of foundation was compared with fixed-ended model at the seabed. The flexibilities of foundation were obtained by coupled spring model at the seabed and Winkler Spring Model with soil depth. As a result, the first mode of the whole system with the Winkler Spring Model was decreased relative to that with the fixed-ended model. The results showed that the effect of foundation flexibility should be considered when designing the offshore wind energy system.

Free Vibration Analysis of Thick Plates on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓여진 후판의 자유진동해석)

  • 김일중;오숙경;이효진;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.852-857
    • /
    • 2003
  • This paper has the object of investigating natural frequencies of thick plates on inhomogeneous Pasternak foundation by means of finite element method and providing kinematic design data lot mat of building structures. This analysis was applied for design of substructure on elastic foundation. Mat of building structure may be consisdered as a thick plate on elastic foundation. Recently, as size of building structure becomes larger, mat area of building structure also tend to become target and building structure is supported on inhomogeneous foundation. In this paper, vibration analysis or rectangular thick plate is done by use or serendipity finite element with 8 nodes by considering shearing strain of plate. The solutions of this paper are compared with existing solutions and finite element solutions with 4${\times}$4 meshes of this analysis are shown the error of maximum 0.083% about the existing solutions. It is shown that natrural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter.

  • PDF

Dynamic Analysis of Building Structures with Foundation Uplift (기초의 uplift를 고려한 건축구조물의 동적해석)

  • ;;Song, Yoon Hwan
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.103-112
    • /
    • 1988
  • In this study, the earthquake response of building structures with foundation uplift was investigated. The Winkler foundation model and two-spring model are widely used to represent the interaction between foundation mat and soil. While the analysis using the Winkler foundation model results in more accurate prediction, it requires a complex procedure and longer computation time. In this study, an equivalent two-spring model(S model) is proposed. The S model can represent the Winkler foundation model more accurately and the analysis using the S model is simpler and more effective. The S model is derived by simplifying the nonlinear moment-rotation relationship of foundation mat. The dynamic responses predicted by the S model gave a good agreement to those of the Winkler foundation model.

  • PDF