• 제목/요약/키워드: Winkler elastic foundation

검색결과 209건 처리시간 0.023초

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

Buckling behavior of nonlinear FG-CNT reinforced nanocomposite beam reposed on Winkler/Pasternak foundation

  • Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Zakaria Belabed;Abdelmoumen Anis Bousahla;Mohamed Abdelaziz Salem;Khaled Mohamed Khedher
    • Computers and Concrete
    • /
    • 제34권3호
    • /
    • pp.297-305
    • /
    • 2024
  • This study investigates the buckling behavior of CNTRC beams on a Winkler-Pasternak elastic foundation, considering their stiffness. To achieve the highest accuracy, the shear stiffness is taken into account based on the Higher-order Shear Deformation Theory (HSDT). A novel exponential power-law distribution of the CNT volume fraction across the beam thickness is employed to model CNTRC beams. Various reinforcement patterns are incorporated into the polymer matrix, featuring single-walled carbon nanotubes (SWCNT) that are both aligned and distributed. The effective mechanical properties of the CNTRC beam are predicted using the rule of mixtures. Hamilton's principle is applied to derive the differential equations of motion. This theoretical framework enables the validation of the approach by comparing numerical simulation results with previous studies. The impact of the exponent order (n), CNT volume fraction, geometrical ratio, and Winkler-Pasternak parameters on buckling analysis is thoroughly presented and discussed. The results indicate that, among the different types of analyzed CNTRC beams, the X-Beam pattern demonstrates the highest buckling load capacity.

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

전달행렬법에 의한 반구 원통형 쉘구조의 해석 (An Analysis of Hemisphere-cylindrical Shell Structure by Transfer Matrix Method)

  • 김용희;이윤영
    • 한국농공학회지
    • /
    • 제45권4호
    • /
    • pp.115-125
    • /
    • 2003
  • Shell structures are widely used in a variety of engineering application, and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winkler foundation, other problems. In this study many simplified methods (analogy of beam on elastic foudation, finite element method and transfer matrix method) are applied to analyze a hemisphere-cylindrical shell structures on elastic foundation. And the transfer matrix method is extensively used for the structural analysis because of its merit in the theoretical backgroud and applicability. Therefore, this paper presents the analysis of hemisphere-cylindrical shell structure base on the transfer matrix method. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method.

A unified formulation for modeling of inhomogeneous nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.369-377
    • /
    • 2018
  • In this article, buckling and free vibration of functionally graded (FG) nanobeams resting on elastic foundation are investigated by developing various higher order beam theories which capture shear deformation influences through the thickness of the beam without the need for shear correction factors. The elastic foundation is modeled as linear Winkler springs as well as Pasternak shear layer. The material properties of FG nanobeam are supposed to change gradually along the thickness through the Mori-Tanaka model. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. From Hamilton's principle, the nonlocal governing equations of motion are derived and then solved applying analytical solution. To verify the validity of the developed theories, the results of the present work are compared with those available in literature. The effects of shear deformation, elastic foundation, gradient index, nonlocal parameter and slenderness ratio on the buckling and free vibration behavior of FG nanobeams are studied.

The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates

  • Fattahi, A.M.;Safaei, Babak;Moaddab, Elham
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.281-292
    • /
    • 2019
  • Nonlocal elasticity and Reddy plant theory are used to study the vibration response of functionally graded (FG) nanoplates resting on two parameters elastic medium called Pasternak foundation. Nonlocal higher order theory accounts for the effects of both scale and the effect of transverse shear deformation, which becomes significant where stocky and short nanoplates are concerned. It is assumed that the properties of FG nanoplate follow a power law through the thickness. In addition, Poisson's ratio is assumed to be constant in this model. Both Winkler-type and Pasternak-type foundation models are employed to simulate the interaction of nanoplate with surrounding elastic medium. Using Hamilton's principle, size-dependent governing differential equations of motion and corresponding boundary conditions are derived. A differential quadrature approach is being utilized to discretize the model and obtain numerical solutions for various boundary conditions. The model is validated by comparing the results with other published results.

Effective modeling of beams with shear deformations on elastic foundation

  • Gendy, A.S.;Saleeb, A.F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.607-622
    • /
    • 1999
  • Being a significant mode of deformation, shear effect in addition to the other modes of stretching and bending have been considered to develop two finite element models for the analysis of beams on elastic foundation. The first beam model is developed utilizing the differential-equation approach; in which the complex variables obtained from the solution of the differential equations are used as interpolation functions for the displacement field in this beam element. A single element is sufficient to exactly represent a continuous part of a beam on Winkler foundation for cases involving end-loadings, thus providing a benchmark solution to validate the other model developed. The second beam model is developed utilizing the hybrid-mixed formulation, i.e., Hellinger-Reissner variational principle; in which both displacement and stress fields for the beam as well as the foundation are approxmated separately in order to eliminate the well-known phenomenon of shear locking, as well as the newly-identified problem of "foundation-locking" that can arise in cases involving foundations with extreme rigidities. This latter model is versatile and indented for utilization in general applications; i.e., for thin-thick beams, general loadings, and a wide variation of the underlying foundation rigidity with respect to beam stiffness. A set of numerical examples are given to demonstrate and assess the performance of the developed beam models in practical applications involving shear deformation effect.

Vibration analysis of micro composite thin beam based on modified couple stress

  • Ehyaei, Javad;Akbarizadeh, M. Reza
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.403-411
    • /
    • 2017
  • In this article, analytical solution for free vibration of micro composite laminated beam on elastic medium based on modified couple stress are presented. The surrounding elastic medium is modeled as the Winkler elastic foundation. The governing equations and boundary conditions are obtained by using the principle of minimum potential energy for EulerBernoulli beam. For investigating the effect of different parameters including material length scale, beam thickness, some numerical results on different cross ply laminated beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0) are presented on elastic medium. Free vibration analysis of a simply supported beam is considered utilizing the Fourier series. Also, the fundamental frequency is obtained using the principle of Hamilton for four types of cross ply laminations with hinged-hinged boundary conditions and different beam theories. The fundamental frequency for different thin beam theories are investigated by increasing the slenderness ratio and various foundation coefficients. The results prove that the modified couple stress theory increases the natural frequency under the various foundation for free vibration of composite laminated micro beams.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation

  • Chaabane, Lynda Amel;Bourada, Fouad;Sekkal, Mohamed;Zerouati, Sara;Zaoui, Fatima Zohra;Tounsi, Abdeldjebbar;Derras, Abdelhak;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.185-196
    • /
    • 2019
  • In this investigation, study of the static and dynamic behaviors of functionally graded beams (FGB) is presented using a hyperbolic shear deformation theory (HySDT). The simply supported FG-beam is resting on the elastic foundation (Winkler-Pasternak types). The properties of the FG-beam vary according to exponential (E-FGB) and power-law (P-FGB) distributions. The governing equations are determined via Hamilton's principle and solved by using Navier's method. To show the accuracy of this model (HySDT), the current results are compared with those available in the literature. Also, various numerical results are discussed to show the influence of the variation of the volume fraction of the materials, the power index, the slenderness ratio and the effect of Winkler spring constant on the fundamental frequency, center deflection, normal and shear stress of FG-beam.