• 제목/요약/키워드: Wings3D

검색결과 48건 처리시간 0.019초

3D Visualization SW를 활용한 초등학교 쌓기나무 도형교육에 관한 연구 (Research on the Teaching Building-blocks in Elementary Geometry Class using 3D Visualization SW)

  • 배헌중;김종성
    • 한국콘텐츠학회논문지
    • /
    • 제17권6호
    • /
    • pp.71-80
    • /
    • 2017
  • 초등학교 5-6학년 수학과 입체도형 교과과정의 중요한 성취기준 중 하나는 쌓기나무를 구성하는 정육면체의 개수 및 여러 방향에서 관찰한 쌓기나무의 형태를 정확히 기술하는 것으로 초등학교 학생들의 공간지각능력을 키우는데 그 목적이 있다. 그럼에도 불구하고 현행 교과서의 쌓기나무 관련 내용에서는 한 방향에서만 관찰된 모습만을 보여주고 있어 원래 목적을 달성하는 데 어려움이 따를 것으로 사료된다. 특히 교과서의 일부 내용은 바닥에서 위쪽을 관찰한 것으로, 이러한 결과는 사실상 관찰이 불가능한 경우에 해당하기도 했다. 이에 반해 Wings3D와 같은 3D Visualization SW를 사용하여 쌓기나무를 관찰하면 관찰방향은 물론이고, 원근에 따라 쌓기나무의 형태 그리고 쌓기나무를 구성하는 정육면체의 크기까지도 크게 다르게 나타난다는 것을 알 수 있다. 뿐만 아니라 가상공간이므로 관찰 방법을 자유롭게 선택할 수 있고 난이도를 달리한 다양한 형태의 쌓기나무 구성이 쉽게 가능한 장점들도 있다. 이러 결과를 토대로, 본 논문에서는 쌓기나무와 같은 도형교과 수업에 Wings3D와 같은 3D Visualization SW를 활용하는 방안을 제안하였다. 선행 연구 결과에 따르면, Wings3D는 초등학교의 도형과 관련한 대부분에 교과내용에도 적용이 가능한 것으로 나타났으며 초등학교에서 보유중인 저사양 컴퓨터에서도 사용이 가능한 open-source SW라는 경제적인 장점도 있다.

페어링을 이용한 지면효과를 받는 3차원 날개 접합부의 경계층 박리 제어 (Boundary Layer Separation Control with Fairing at the Junction of 3D Wings Under Ground Effect)

  • 조지혁;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.57-64
    • /
    • 2005
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various fairing shapes at the junctions of 3D Wings. Numerical results show that a sizeable three-dimensional comer flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and also that this is predicted the main cause of the high lift-to-drag(L/D) reduction rate of the main wing. To avoid the comer flow separation, the main idea of this study is to reduce the cross section gradient of the comer flow tube near the trailing edge for various fairing shapes. Improvements on L/D ratios of the wings are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction when the cross section gradient is changed slowly at the trailing edge.

  • PDF

공기부상 전동 운행체의 지면효과를 받는 3차원 날개에 대한 공력해석 연구 (Aerodynamic Investigation of Three-Dimensional Wings in Ground Effect for Aero-levitation Electric Vehicle)

  • 오현준;서정희;문영준;조진수;윤용현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.196-201
    • /
    • 2004
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various ground clearances and wing spans at the Reynolds number of $2\times10^6$. Numerical results show that a sizeable three-dimensional flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and that this is conjectured a primary cause for the high lift-to-drag(L/D) reduction rate of the main wing, when the wing span is decreased. Improvements on L/D ratios of the wings with small spans are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction.

  • PDF

Efficient models for analysis of a multistory structure with flexible wings

  • Moon, Seong-Kwon;Lee, Dong-Guen
    • Structural Engineering and Mechanics
    • /
    • 제13권5호
    • /
    • pp.465-478
    • /
    • 2002
  • This study lays emphasis on the development of efficient analytical models for a multistory structure with wings, including the in-plane deformation of floor slabs. For this purpose, a multistory structure with wings is regarded as the combination of multistory structures with rectangular plan and their junctions. In addition, a multistory structure with a rectangular plan is considered to be an assemblage of two-dimensional frames and floor slabs connecting two adjacent frames at each floor level. This modeling, concept can be easily applied to multistory structures with plans in the shape of L, T, Y, U, H, etc. To represent the in-plane deformation of floor slabs efficiently, a two-dimensional frame and the floor slab connecting two adjacent frames at each floor level are modeled as a stick model with two degrees of freedom per floor and a stiff beam with shear deformations, respectively. Three models are used to investigate the effect of in-plane deformation of the floor slab at the junction of wings on the seismic behavior of structures. Based on the comparison of dynamic analysis results obtained using the proposed models and three-dimensional finite element models, it could be concluded that the proposed models can be used as an efficient tool for an approximate analysis of a multistory structure with wings.

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제6권3호
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

섬바디의 재배상 문제점과 해결방안 (Problems and Their Solutions in Growing Seombadi ( Dystaenia take simana ))

  • 허삼남
    • 한국초지조사료학회지
    • /
    • 제2권2호
    • /
    • pp.16-20
    • /
    • 1981
  • To cultivate Dystaenia takesimana as a fodder crop, Its problems and solutions are summarized follows : 1. There are a wax layer and wings on the out side of seed coat of D. takesimana seeds, which seems to inhibit imbibition and cause delayed germination. 2. The root and shoot growth of D. takesimana are very poor in the early stage and weed control is quite troublesome. 3 The growth of D. takesimana is very poor the soil of low fertility and much depressed in summer. 4 . The percent germination could be increased by removing wings, soaking, high temperature treatment or by chemical scarification. 5. Compost is most effective for the growth of D. takesimana and lime dressing is desired in the soil of low pH. 6 . The seedling growth could be improved selecting and breeding the strains with better germination and root growth, at the germination and growth characteristics of D. takesimana are variable.

  • PDF

3차원 날개 설계를 위한 저레이놀즈수 에어포일에 대한 연구 (A STUDY ON THE LOW REYNOLDS NUMBER AIRFOILS FOR THE DESIGN OF THREE DIMENSIONAL WING)

  • 정경진;이재훈;권장혁;강인모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.90-96
    • /
    • 2009
  • In this study, a generic airfoil designed by the inverse method was evaluated with several candidate airfoils as a first step. Each airfoil was compared with respect to aerodynamic performance to meet the requirement of HALE(high altitude long endurance) aircraft. The second step was to optimize the candidate airfoil using the couple of optimization formulations to down select an optimum airfoil. For the analysis of low Reynolds number 2D flow, Drela's MSES was used. After comparing the aerodynamic results, the best airfoil was chosen to construct the baseline 3D wing. The Navier-Stokes code was used to evaluate the overall aerodynamic performance of designed wing with other wings. The results show that the designed wing has the best performance compared with other wings.

  • PDF

자바 애플릿을 이용한 3차원 날개 격자 자동 생성 프로그램의 개발과 적용 (DEVELOPMENT AND APPLICATION OF AUTOMATIC GRID GENERATION PROGRAM FOR 3-D WING USING JAVA APPLET)

  • 이장훈;조혁수;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.335-340
    • /
    • 2010
  • In this paper development of an automatic grid generation program for flow field calculation around 3D wing is described and its application is also introduced. The program is developed by using JAVA programming language and a graphic library, JOGL, and it can be usee either as an application program on a local computer or as a applet in the network environment. Currently, The program provides NACA series 4-digit airfoils as the wing cross-section shape and it offers a non-complicated GUI program which can easily generate structured grids for wings based on user's parameter input. Grid generated by the program can be selected as one of two types; O-type and C-type. In this research advancing layer method(ALM) augmented by elliptic smoothing method is used for the FLUENT. It is shown that by using current program high-quality structured grids around 3D wings can be easily generated, and typical grid generation results and flow solutions are demonstrated. Study on effects of geometric parameters on flow field is also tried by changing major wing parameters such as incidence angle type of wing-tip and sweepback angle.

  • PDF

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제34권3호
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

3차원 표면효과익의 정상 및 비정상 성능해석 (Analysis of Steady and Unsteady Performance for 3-D Surface Effect Wing)

  • 박일룡;전호환
    • 대한조선학회논문집
    • /
    • 제35권3호
    • /
    • pp.14-25
    • /
    • 1998
  • 본 논문은 자유수면 위를 가까이 비행하는 표면효과익선(Wing-in Ground Effect Craft)의 날개에 작용하는 정상(steady) 및 비정상(unsteady) 동유체력을 포텐셜 기저 패널법을 사용하여 수치해석을 수행한 결과이다. 파가 없는 고정수면 위를 비행하는 정상문제의 경우에 대해서는 단면변화, 앙각(angle of attack), 가로-세로비(aspect ratio), 날개 끝단판(end-plate)의 부착 유무 및 비행고도에 따른 양력 및 항력을 계산하여 풍동실험 결과와 비교하였다. 비정상문제에서는 이미 정의된 파표면 위를 표면효과익이 날아가는 경계치 문제로 해석하였다. 파장, 파고, 비행고도의 변화에 따른 날개에 작용하는 비정상 동유체력을 계산하여 파가 있을 경우 표면효과의 영향을 살펴보았다.

  • PDF