• Title/Summary/Keyword: Winds

Search Result 931, Processing Time 0.028 seconds

Statistical Characteristics of Local Circulation Winds Observed using Climate Data in the Complex Terrain of Chilgok, Gyeongbuk

  • Ha-Young Kim;Soo-Jin Park;Hae-Dong Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.375-384
    • /
    • 2023
  • Climate data were obtained over an eight-year period (July 2013 to June 2021) using an automatic weather observation system (AWS) installed at the foot of Mt. Geumo in Chilgok, Gyeongbuk. Using climate data, the statistical and meteorological characteristics of the local circulation between the Nakdong River and Mt. Geumo were analyzed. This study is based on automatic weather observation system data for Dongyeong, along with comparative climate data from the Korea Meteorological Administration (Chilgok) and the Gumi meteorological observatory. Over the eight- years, mountain and valley winds have occurred 48 times a year on average, with the highest occurring in May and the weakest winds in June and December. When mountain winds occurred, the temperature in the nearby lowland region more strongly decreased than when valley winds blew. However, the potential to use mountain winds to improve urban thermal environments is limited because mountain winds occur infrequently in summer when a drop in nighttime temperature is required.

Numerical Experiment on the Sogcho Eddy due to the strong offshore winds in the East Sea

  • Kim Soon Young;Lee Hyong Sun;Lee Jae Chul
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 1998
  • In order to understand the generation of the Sogcho Eddy due to the strong offshore winds, we first investigated the characteristics of winds at Sogcho, Kangnung and Samchuk, and then carried out a series of numerical experiments using the nonlinear 1 1/2-layer model. The models were forced by wind stress fields, similar in structure to the prevailing winds that a field in the east coast of Korea during the winter season. The winds were composed of the background winds $(-1\;dyne/cm^2)$ for 90 days and the local winds $(-4\;dyne/cm^2)$ for 30 days. The analysis of wind data at three stations (Sogcho, Kangnung, and Samchuk) showed that the wind was stronger in winter than in other seasons and the offshore component was much dominant. According to our numerical solutions, the Sogcho Eddy of about 200 km in diameter was generated due to the strong offshore winds prevailing in the Kangnung - Sogcho regions. The eastward propagation of the Rossby waves reflected at the western boundary resulted in the eastward meandering motion from the eastern side of the eddy.

  • PDF

A Comparison of Typhoon Wind Models with Observed Winds (해상풍 관측자료에 근거한 태풍 해상풍 모형간의 상호비교)

  • 강시환;전기천;박광순;방경훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.100-107
    • /
    • 2002
  • The sea-surface winds during the passage of 64 typhoons for 1979-1999 were simulated using two different typhoon wind models, ie, typhoon parametric model(TPM) and primitive vortex model(PVM). The model hindcast winds were compared with the winds observed at JMA ocean buoys(22001 and 21002) and Kyushu ocean observation tower. The analysis of ms and relative errors between hindcast and observed winds was made to find the accuracy and sensitivity of the typhoon wind prediction models. Both hindcast winds of TPM and PVM underestimate the observed typhoon winds, but PVM winds are more closer to the observations with less rms and relative errors. Relative errors of two model winds were small within 200km from typhoon center, but TPM's relative errors increase up to 70% as the radial distance from typhoon center increases beyond > 200km although PVM's relative errors remain in 20% with less sensitive to the distance from typhoon centers.

The Santa Ana winds of Southern California: Winds, gusts, and the 2007 Witch fire

  • Fovell, Robert G.;Cao, Yang
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.529-564
    • /
    • 2017
  • The Santa Ana winds occur in Southern California during the September-May time frame, bringing low humidities across the area and strong winds at favored locations, which include some mountain gaps and on particular slopes. The exceptionally strong event of late October 2007, which sparked and/or spread numerous fires across the region, is compared to more recent events using a numerical model verified against a very dense, limited-area network (mesonet) that has been recently deployed in San Diego County. The focus is placed on the spatial and temporal structure of the winds within the lowest two kilometers above the ground within the mesonet, along with an attempt to gauge winds and gusts occurring during and after the onset of October 2007's Witch fire, which became one of the largest wildfires in California history.

EVALUATION OF MARINE SURFACE WINDS OBSERVED BY ACTIVE AND PASSIVE MICROWAVE SENSORS ON ADEOS-II

  • Ebuchi, Naoto
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.146-149
    • /
    • 2006
  • Marine surface winds observed by two microwave sensors, SeaWinds and Advanced Microwave Scanning Radiometer (AMSR), on the Advanced Earth Observing Satellite-II (ADEOS-II) are evaluated by comparison with off-shore moored buoy observations. The wind speed and direction observed by SeaWinds are in good agreement with buoy data with root-mean-squared (rms) differences of approximately 1 m $s^{-1}$ and $20^{\circ}$, respectively. No systematic biases depending on wind speed or cross-track wind vector cell location are discernible. The effects of oceanographic and atmospheric environments on the scatterometry are negligible. The wind speed observed by AMSR also exhibited reasonable agreement with the buoy data in general with rms difference of 1.2 m $s^{-1}$. Systematic bias which was observed in earlier versions of the AMSR winds has been removed by algorithm refinements. Intercomparison of wind speeds globally observed by SeaWinds and AMSR on the same orbits also shows good agreements. Global wind speed histograms of the SeaWinds data and European Centre for Medium-range Weather Forecasts (ECMWF) analyses agree precisely with each other, while that of the AMSR wind shows slight deviation from them.

  • PDF

Characteristics of Horizontal Winds in the Mesosphere and Lower Thermosphere Region over Korean Peninsula Observed from the Korea Astronomy and Space Science Institute Meteor Radar

  • Kam, Hosik;Kwak, Young-Sil;Yang, Tae-Yong;Kim, Yong Ha;Kim, Jeongheon;Lee, Jaewook;Choi, Seonghawn;Baek, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.229-236
    • /
    • 2021
  • We present for the first time the characteristics of upper atmospheric horizontal winds over the Korean Peninsula. Winds and their variability are derived using four-year measurements by the Korea Astronomy and Space Science Institute (KASI) meteor radar. A general characteristic of zonal and meridional winds is that they exhibit distinct diurnal and seasonal variations. Their changes indicate sometimes similar or sometimes different periodicities. Both winds are characterized by either semi-diurnal tides (12 hour period) and/or diurnal tides (24 hour period) from 80-100 km. In terms of annual change, the annual variation is the strongest component in both winds, but semi-annual and ter-annual variations are only detected in zonal winds.

First Comparison of Mesospheric Winds Measured with a Fabry-Perot Interferometer and Meteor Radar at the King Sejong Station (62.2°S, 58.8°W)

  • Lee, Wonseok;Kim, Yong Ha;Lee, Changsup;Wu, Qian
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.235-242
    • /
    • 2018
  • A Fabry-Perot interferometer (FPI) for mesospheric observations was installed at King Sejong Station ($62.2^{\circ}S$, $58.9^{\circ}W$) in Antarctica in 2017. For the initial validation of the FPI measurements, we compare neutral wind data recorded with the FPI with those from a Meteor Radar (MR) located nearby. The overall characteristics of the FPI and MR winds of both OH 892.0 nm (87 km) and OI 557.7 nm (97 km) airglow layers are similar. The FPI winds of both layers generally match the MR winds well on the observed days, with a few exceptions. The correlation analysis of the FPI and MR wind data shows that the correlation coefficients for the zonal winds at 87 and 97 km are 0.28 and 0.54, respectively, and those for the meridional winds are 0.36 and 0.54, respectively. Based on the assumption that the distribution of the airglow emissions has a Gaussian function with respect to the altitude, we calculated the weighted mean winds from the MR wind profile and compared them with the FPI winds. By adjusting the peak height and full width at half maximum of the Gaussian function, we determined the change of the correlation between the two winds. The best correlation for the OH and OI airglow layers was obtained at a peak height of 88-89 km and 97-98 km, respectively.

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Characteristics of Strong Winds Caused by Typhoons on the Korean Peninsula Using Long-term Meteorological Data (근대기상관측 이후 장기기상자료를 이용한 한반도 영향태풍의 강풍특성)

  • Lee, Eunji;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.30 no.9
    • /
    • pp.753-762
    • /
    • 2021
  • This study analyzed the characteristics of strong winds accompanying typhoons for a period of 116 years, from 1904 to 2019, when modern weather observations began in Korea. Analysis shows that the average wind speed and high wind rate caused by typhoons were higher over the sea and in the coastal areas than in the inland areas. The average wind speed was higher over the West Sea than over the South Sea, but the rate of strong wind was greater over the South Sea than over the West Sea. The average wind speed decreased by 1980 and recently increased, while the rate of strong winds decreased by 1985 and has subsequently increased. By season, the strong winds in autumn (september and october) were stronger than those in summer (june, july, and august). Strong winds were also more frequent in autumn than in summer. The analysis of the changes in strong winds caused by typhoons since the 1960s shows that the speed of strong winds in august, september, and october has increased more recently than in the past four cycles. In particular, the increase in wind speed was evident in fall (september and october). Analysis of the results suggests that the stronger wind is due to the effects of autumn typhoons, and the increased possibility of strong winds.

Protection Measure of Transmission Jumper Line by Gap Winds (협곡풍에 의한 송전선로점퍼선 횡진고장 방지대책)

  • Koh, Bong-Eon;Pyo, Gwang-Chan;Park, Jae-Hyung;Kang, Bum-Young;Jung, Hyun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1071-1077
    • /
    • 2009
  • Because several winds cause the a fault of transmission supply, KEPCO trys to protect the the trouble and supply the power stably. Kepco find out the weak mountains by winds and strengthen the power equipment annually. Power quality is the competition power in the international world and satisfy the customer using th power Therefore this paper deals with the fault relation between winds and transmission line.