Browse > Article
http://dx.doi.org/10.5140/JASS.2021.38.4.229

Characteristics of Horizontal Winds in the Mesosphere and Lower Thermosphere Region over Korean Peninsula Observed from the Korea Astronomy and Space Science Institute Meteor Radar  

Kam, Hosik (Division of Space Science, Korea Astronomy and Space Science)
Kwak, Young-Sil (Division of Space Science, Korea Astronomy and Space Science)
Yang, Tae-Yong (Division of Space Science, Korea Astronomy and Space Science)
Kim, Yong Ha (Department of Astronomy, Space Science and Geology, Chungnam National University)
Kim, Jeongheon (Division of Space Science, Korea Astronomy and Space Science)
Lee, Jaewook (Division of Space Science, Korea Astronomy and Space Science)
Choi, Seonghawn (Division of Space Science, Korea Astronomy and Space Science)
Baek, Ji-Hye (Division of Space Science, Korea Astronomy and Space Science)
Publication Information
Journal of Astronomy and Space Sciences / v.38, no.4, 2021 , pp. 229-236 More about this Journal
Abstract
We present for the first time the characteristics of upper atmospheric horizontal winds over the Korean Peninsula. Winds and their variability are derived using four-year measurements by the Korea Astronomy and Space Science Institute (KASI) meteor radar. A general characteristic of zonal and meridional winds is that they exhibit distinct diurnal and seasonal variations. Their changes indicate sometimes similar or sometimes different periodicities. Both winds are characterized by either semi-diurnal tides (12 hour period) and/or diurnal tides (24 hour period) from 80-100 km. In terms of annual change, the annual variation is the strongest component in both winds, but semi-annual and ter-annual variations are only detected in zonal winds.
Keywords
meteor radar; mesospheric winds; diurnal variation; annual variation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lilienthal F, Jacobi, C, Geissler C, Forcing mechanisms of the terdiurnal tide, Atmos. Chem. Phys. 18, 15725-15742 (2018) https://doi.org/10.5194/acp-18-15725-2018   DOI
2 Liu HL, On the large wind shear and fast meridional transport above the mesopause, Geophys. Res. Lett. 34, L08815 (2007). https://doi.org/10.1029/2006GL028789   DOI
3 Qian L, Yue J, Impact of the lower thermospheric winter-tosummer residual circulation on thermospheric composition, Geophys. Res. Lett. 44, 3971-3979 (2017) https://doi. org/10.1002/2017GL073361   DOI
4 Shuai J, Zhang SD, Huang CM, Yi F, Huang KM, et al., Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations, Sci. China Technol. Sci. 57, 998-1009 (2014). https://doi.org/10.1007/s11431-014-5527-z   DOI
5 Smith AK, Garcia RR, Marsh DR, Richter JH, WACCM simulations of the mean circulation and trace species transport in the winter mesosphere, J. Geophys. Res. 116 (2011). https://doi.org/10.1029/2011JD016083   DOI
6 Tang Q, Zhou Y, Du Z, Zhou C, Qiao J, et al., A comparison of meteor radar observation over China region with horizontal wind model (HWM14). Atmosphere. 12, 98 (2021). https://doi.org/10.3390/atmos12010098   DOI
7 Wu Q, Chen Z, Mitchell N, Fritts D, Iimura H, Mesospheric wind disturbances due to gravity waves near the Antarctica Peninsula, J. Geophys. Res. Atmos. 118, 7765-7772 (2013). https://doi.org/10.1002/jgrd.50577   DOI
8 Yang TY, Kwak YS, Kil H, Lee YS, Lee WK, et al., Occurrence climatology of F region field-aligned irregularities in middle latitudes as observed by a 40.8 MHz coherent scatter radar in Daejeon, South Korea, J. Geophys. Res. 120, 10107-10115 (2015). https://doi.org/10.1002/2015JA021885   DOI
9 Zhao G, Liu L, Ning B, Wan W, Xiong J, The terdiurnal tide in the mesosphere and lower thermosphere over Wuhan (30°N, 114E), Earth Planets Space. 57, 393-398 (2005). https://doi.org/10.1186/BF03351823   DOI
10 Younger PT, Pancheva D, Middleton HR, Mitchell NJ, The 8-hour tide in the Arctic mesosphere and lower thermosphere, J. Geophys. Res. 107, 1420 (2002). https://doi.org/10.1029/2001JA005086   DOI
11 Koushik N, Kumar KK, Ramkumar G, Subrahmanyam KV, Kumar GK, et al., Planetary waves in the mesosphere lower thermosphere during stratospheric sudden warming: observations using a network of meteor radars from high to equatorial latitudes. Clim. Dyn. 54, 4059-4074 (2020). https://doi.org/10.1007/s00382-020-05214-5   DOI
12 Forbes JM, Vial F, Monthly simulations of the solar semidiurnal tide in the mesosphere and lower thermosphere, J. Atmos. Sol. Terr. Phys. 51, 649-661 (1989). https://doi.org/10.1016/0021-9169(89)90063-9   DOI
13 Garcia RR, Dunkerton TJ, Lieberman RS, Vincent RA, Climatology of the semiannual oscillation of the tropical middle atmosphere, J. Geophys. Res. 102, 26019-26032 (1997). https://doi.org/10.1029/97JD00207   DOI
14 Holdsworth DA, Angle of arrival estimation for all-sky interferometric meteor radar systems, Radio Sci. 40, RS6010 (2005). https://doi.org/10.1029/2005RS003245   DOI
15 Holton JR, Wehrbein WM, A numerical model of the zonal mean circulation of the middle atmosphere, Pure Appl. Geophys. 118, 284-306 (1980). https://doi.org/10.1007/BF01586455   DOI
16 Kam H, Kim YH, Mitchell NJ, Kim JH, Lee C, Evaluation of estimated mesospheric temperatures from 11-year meteor radar datasets of King Sejong station (62°S, 59°W) and Esrange (68°N, 21°E), J. Atmos. Sol. Terr. Phys. 196, 105148 (2019). https://doi.org/10.1016/j.jastp.2019.105148   DOI
17 Krebsbach M, Preusse P, Spectral analysis of gravity wave activity in SABER temperature data, Geophys. Res. Lett. 34, L03814 (2007). https://doi.org/10.1029/2006GL028040   DOI
18 Fritts DC, Alexander MJ, Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys. 41, 1003 (2003). https://doi.org/10.1029/2001RG000106   DOI
19 Chen D, Strube C, Ern M, Preusse P, Riese M, Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere, Ann. Geophys. 37, 487-506 (2019). https://doi.org/10.5194/angeo-37-487-2019   DOI
20 Cevolani G, Tidal activity in the meteor zone over Budrio, Italy, Hand-Book MAP, 25, 121-137 (1987).
21 Kwak YS, Yang TY, Kil H, Phanikumar DV, Lee JJ, et al., Characteristics of the E- and F-region field-aligned irregularities in middle latitudes: initial results obtained from the Daejeon 40.8 MHz VHF radar in South Korea, J. Astron. Space Sci. 31, 15-23 (2014). https://doi.org/10.5140/JASS.2014.31.1.15   DOI
22 Lieberman RS, Long-term variations of zonal mean winds and (1,1) driving in the equatorial lower thermosphere, J. Atmos. Sol. Terr. Phys. 59, 1483-1490 (1997). https://doi. org/10.1016/S1364-6826(96)00150-2   DOI
23 Lindzen RS, Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res. Oceans. 86, 9707-9714 (1981). https://doi.org/10.1029/JC086iC10p09707   DOI
24 Lindzen RS, Chapman S, Atmospheric Tides (D. Reidel, Dordrecht, 1970).
25 Smith AK, Structure of the terdiurnal tide at 95 km, Geophys. Res. Lett. 27, 177-180 (2000). https://doi.org/10.1029/1999GL010843   DOI
26 Namboothiri SP, Kishore P, Murayama Y, Igarashi K, MF radar observations of terdiurnal tide in the mesosphere and lower thermosphere at Wakkanai (45.4°N, 141.7°E), Japan, J. Atmos. Sol. Terr. Phys. 66, 241-250 (2004). https://doi.org/10.1016/j.jastp.2003.09.010   DOI
27 Pancheva D, Mukhtarov P, Smith AK, Climatology of the migrating terdiurnal tide (TW3) in SABER/TIMED temperatures, J. Geophys. Res. Space Phys. 118, 1755-1767 (2013). https://doi.org/10.1002/jgra.50207   DOI
28 Thayaparan T, The terdiurnal tide in the mesosphere and lower thermosphere over London, Canada (43°N, 81°W), J. Geophys. Res. 102, 21695-21708 (1997). https://doi.org/10.1029/97JD01839   DOI
29 Yang TY, Kwak YS, Lee J, Park J, Choi S, The first report on the afternoon E-region plasma density irregularities in middle latitude, J. Astron. Space Sci. 38, 135-143 (2021). https://doi.org/10.5140/JASS.2021.38.2.135   DOI
30 Holdsworth DA, Reid IM, Cervera MA, Buckland Park all-sky interferometric meteor radar, Radio Sci. 39, RS5009 (2004). https://doi.org/10.1029/2003RS003014   DOI