• Title/Summary/Keyword: Window Type Ventilation System

Search Result 23, Processing Time 0.043 seconds

Study on Application of Shaft Box type Balcony for Improvement of Ventilation Performance in Apartment (공동주택의 환기성능 개선을 위한 Shaft Box형 발코니의 적용성 검토)

  • Roh, Ji-Woong;Kim, Gon
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.3-8
    • /
    • 2007
  • Recently, because of the continuous rise of international oil price, energy saving is strongly demanding. So, Ecological technics of architecture such as use of natural energy have been actively explored in the field of building. In the method of utilizing natural energy, the key point is to saving energy effectively as not lowering the comfort of indoor environment, various systems investigated. Many papers about double skin facade system have been reported, it is announced broadly that the system is very effective in improvement of natural ventilation and indoor thermal environment, and also protecting outdoor sound. The shaft box facade is a special form of box window construction. It consists of a system of box windows with continuous vertical shafts that extend over a number of stories to create a stack effect. The facade layout consists of an alternation of box windows and vertical shaft segments. This research investigated the natural ventilation performance of shaft box type balcony which conform the shaft box type double skin to the exiting balcony construction. First, analyzed various types of exiting apartments, proto-type was decided. By using virtual environment Program, modeling the proto-type, compared the contribution of air temperature and the effect of outdoor air cooling. by this research, we confirmed that shaft box type balcony had many possibility for improvement of indoor environment.

A Study on the Performance of the Hybrid Ventilation System for Apartment Houses (공동주택의 하이브리드 환기시스템 성능평가 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Kim, Sang-Hee
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.89-96
    • /
    • 2012
  • The purpose of this study was to evaluate the applicability of hybrid ventilation system in apartment housings and present a design method to improve the performance of hybrid ventilation system using the CFD simulation. As the object of CFD simulation, a small apartment houses with area of $51m^2$ and $81m^2$ were selected and evaluated. The test hybrid ventilation system are window frame natural air supply & duct exhaust hybrid system(Hybrid 1) and window frame natural air supply & bathroom and livingroom exhaust hybrid ventilation system(Hybrid 2). To evaluate the ventilation efficiency, we used the locations of diffuser installed for each system as the variables through the CFD simulation. In the case of Hybrid 1, the ventilation efficiency of the exhaust duct diffuser located on the inside room was higher rather than the exhaust duct diffuser located on the entrance. In the case of Hybrid 2, the most efficient system was the system that the diffuser connecting the bathroom static pressure fan is installed on the center of the living room. The ventilation efficiency of the Hybrid 2 in the case of $51m^2$ type was more than 20% of the Hybrid 1. But, The ventilation efficiency of the Hybrid 2 in the case of $84m^2$ type was more than 14% of the Hybrid 1. Therefore, to apply the Hybrid ventilation, a study that considers various variable should be conducted.

Analysis of the Thermal Environment and Natural Ventilation for the Energy Performance Evaluation of the Double Skin System during the Summer (이중외피 시스템의 에너지성능평가를 위한 하절기 열환경 및 자연환기 분석)

  • Eom, Jung-Won;Cho, Soo;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.68-76
    • /
    • 2002
  • This paper discusses thermal and ventilation performance which might be caused by the adoption of one of specific building facade techniques, Double Skin System(DSS). One building with a prototypical DSS was selected and systematically investigated through field monitoring and computer simulation techniques. A network model of ventilation was successfully made using COMIS to evaluate ventilation performance of the system which can hardly be done by field measurements. Various operating conditions of air conditioning on/off and window opening were implemented in this type of building. Through the appropriate operation of the DSS in summer, simulation-based and experimental results implicate that it can lead to cooling energy savings.

A Comparative Analysis of Energy Performance according to the Ventilation System in Apartment House (공동주택의 환기시스템별 에너지성능 비교 분석)

  • Kim, Gil-Tae;Chun, Chu-Young;Kim, Sun-Dong
    • Land and Housing Review
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2015
  • The purpose of this study was to comparative analyses of energy performance in apartment houses adopted window frame-type natural ventilation, under-floor air distribution ventilation and heat recovery ventilation. As the object of energy simulation, the three type ventilation system with area of $84m^2$ was selected in apartment house. As a result, when the ECO2 simulation was performed, the 1st requirement quantity per annual were $159.9kWh/m^2yr$(CASE1, Natural Ventilation), $179.7kWh/m^2yr$(CASE2, Under-floor Air Distribution Ventilation) and $161.0kWh/m^2yr$(CASE3, Heat Recovery Ventilation).

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

A Study on Securing Safety of Evacuation through Smoke Control in Case of Fire at the Central Corridor Type Intelligent Buildings (중복도형 인텔리전트빌딩 화재시 연기제어를 통한 피난안전성 확보에 관한 연구)

  • Min, Se Hong;Lee, Jae Moon;Bae, Yeon Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.117-127
    • /
    • 2015
  • This study investigated the smoke blocking and control systems for the safety of residents evacuation and for the prevention of smoke spread through the central corridor in the event of central corridor type of intelligent building fire. We offered additional ways of utilizing smoke ventilators and intake ventilation equipment and utilized CFD-based fire simulation program(FDS Ver.5.5.3) in order to analyze the effect. As a result, many differences in the smoke block effect, depending on the application of smoke ventilator and location of installation, was found. In addition, the result was found that larger effect was showed not in the case of application of smoke ventilator in central corridor only but application in fire room. The reason is that the smoke leakage is blocked primarily as air is flowed in the fire room through open door by operation of intake smoke ventilator in the public corridor and secondarily, the smoke leakage to the public corridor could be blocked as fire and smoke were released to the opened smoke ventilator continuously. Especially, the effect was maximized through complex interactions by applying smoke ventilator and intake ventilation equipment in corridor together rather than applying smoke ventilator and intake ventilation equipment independently. The proposed measure through this study shall be considered from architectural plan as one of ways for blocking from smoke spread to the central corridor in the central corridor type of intelligent building. In addition, flaws on regulation shall be established and supplemented.

Development of Theoretical Formulae for Calculation of Required Torque in Roll-up Type Ventilation System (권취식 창개폐시스템의 소요토크모델 개발)

  • 박규식;이기명;정석현
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.133-142
    • /
    • 1997
  • Most of the greenhouses employ the roll-up type ventilation control system. Torque required to roll-up and down might be theoretically expressed with the weight times radius of the ventilation roll; however, measured torques were two times of the theoretically estimated values. As the window film of roll-up vent is used over the periods of time, the warping and crumpling of the material caused the increase of the torque in addition to a span deformation. Therefore, this study was performed to develop an empirical torque formulae to present basic torque data and to assist the development of roll-up type ventilation control system. The empirically adjusted rolling radius (r+a) exponentially increased at the maximum span deformation. The coefficient of rolling resistance (Cr) was about 0.7―0.8 depending upon the wrinkle status of film material.

  • PDF

A Study on Application of a Heat Recovery Ventilator using Photovoltaic System in School (학교 교실의 태양광발전 환기시스템 적용성 연구)

  • Jang, Yong-Sung;Suh, Seung-Jik;Hong, Sung-Hee;Yu, Kwon-Jong;Park, Hyu-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • This study aims to evaluate application of a heat recovery ventilator(HRV) using photovoltaic(PV) system. To this end, we analyzed performance of a PV system, which it was evaluated by monthly power wattage and conversion efficiency according to design capacity of a HRV. The results of this study can be summarized as follows. (1) A conversion efficiency of the PCS was evaluated about 86% in rated power. (2) A maximum, minimum and average output power were respectively analyzed 49.2W, 47.3W, and 48.8W. (3) Total power wattage of 200W PV system was 211kW and it was 316kW in case of 300W PV system. (4) Insufficient electrical power of a duct and window type ventilation system was respectively calculated 133.5kW and 147.7kW.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.