최근 운전자의 편의와 안전을 위해 전방 차량 추돌 감지 시스템(Front Collision Warning System : FCWS)과 같은 다양한 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)이 개발되고 있다. FCWS는 주행 중 실시간으로 동작해야 하기 때문에 높은 처리속도를 필요로 한다. 또한 자동차의 전장화에 따라 FCWS를 차량용 임베디드 시스템에서 동작시키기 위해 저전력 시스템이 필요하다. 본 논문에서는 FCWS를 CPU-FPGA 구조에서 실시간 처리가 가능하도록 구현하였다. 차선 검출은 Inverse Transform Perspective(IPM)와 슬라이딩 윈도우 방식을 이용하여 CPU에서도 빠른 속도로 동작할 수 있도록 하였다. 차량검출은 높은 인식률을 가지는 Convolutional Neural Network(CNN)을 이용하였고, FPGA에서 병렬처리로 가속하였다. 제안하는 구조는 저전력으로 동작하는 ARM-Core A9과 FPGA를 내장한 Intel FPGA Cyclone V SoC(System on Chip)에서 검증하였다. HD해상도에서 FCWS는 44FPS로 실시간으로 동작하며, 고성능 PC 환경보다 처리속도 대비 에너지 효율이 약 3.33배 높은 것을 확인했다.
소프트웨어가 점점 복잡해지고 대형화됨에 따라서 사용자의 요구가 매우 다양해지고 있으며, 제품에 대한 기대 수준도 높아지고 있다. 그러므로, 사용자의 요구 사항을 정확히 분석하여 효과적으로 개발 단계에 적용하는 것은 매우 중요하다. 본 논문에서는 자연어로 표현되는 요구 사항 문서의 분석 시에 나타나는 오류를 효과적으로 줄이고, 수정하는데 사용될 수 있는 요구 분석 시스템을 제안한다. 제안된 시스템은 문서간 유사도 측정에 의해서 문서간의 의존성(dependency) 분석을 지원하고 문장간 유사도 측정에 의해서 요구 사항간의 연계성(traceability), 중복성(redundancy), 불일치성(inconsistency), 그리고 불완전성(imcompleteness)을 발견하는 것을 지원한다. 또한 모호한 문장을 추출하여 요구사항의 불명확성 (ambiguity)을 발견하는 기능도 제공한다. 문서간 유사도 측정을 위해서 사용된 색인 방법은 슬라이딩 윈도우 모델과 의존 구조 모델을 결합한 것으로 각 모델이 가지는 단점을 효과적으로 보완할 수 있다. 본 논문에서는 문서간, 문장간 유사도 측정 기법의 효율성을 실험을 통해 검증하였으며 구현된 시스템을 통해 분석 처리되는 과정을 보여주고 있다.
이진화는 컴퓨터 비전 분야에서 전경과 배경을 분리하는 중요한 역할을 한다. 본 연구에서는 적응 퍼지 이진화 방법을 제안한다. 이동 창 내의 화소의 밝기 값 분포에 따라 ${\alpha}$-컷을 구하고, 이 값을 이용하여 이진화를 수행한다. ${\alpha}$-컷을 구하기 위해 수행속도가 빠른 기존의 이진화 방법들을 이용한다. 기존 방법들로 구해진 임계치들을 퍼지 소속 함수들의 중심값으로 설정하고, 화소의 밝기값 분포를 이용하여 퍼지 소속 함수들의 구간을 결정한다. 결정된 퍼지 소속 함수들을 이용하여 ${\alpha}$-컷의 조정율을 구하고, 각 화소의 소속도에 따라 이진화를 수행한다. 실험 결과는 제안한 방법이 기존의 방법들보다 전경과 배경이 효과적으로 분리될 수 있고, 전경의 손실이 적어지는 것을 보여준다.
Purpose: The purpose of this study is to overcome limitations of conventional studies that to predict Baltic Dry Index (BDI). The study proposed applications of Artificial Neural Network (ANN) named Long Short-Term Memory (LSTM) to predict BDI. Methods: The BDI time-series prediction was carried out through eight variables related to the dry bulk market. The prediction was conducted in two steps. First, identifying the goodness of fitness for the BDI time-series of specific ANN models and determining the network structures to be used in the next step. While using ANN's generalization capability, the structures determined in the previous steps were used in the empirical prediction step, and the sliding-window method was applied to make a daily (one-day ahead) prediction. Results: At the empirical prediction step, it was possible to predict variable y(BDI time series) at point of time t by 8 variables (related to the dry bulk market) of x at point of time (t-1). LSTM, known to be good at learning over a long period of time, showed the best performance with higher predictive accuracy compared to Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). Conclusion: Applying this study to real business would require long-term predictions by applying more detailed forecasting techniques. I hope that the research can provide a point of reference in the dry bulk market, and furthermore in the decision-making and investment in the future of the shipping business as a whole.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.1989-2011
/
2019
Vehicle detection based on aerial images is an interesting and challenging research topic. Most of the traditional vehicle detection methods are based on the sliding window search algorithm, but these methods are not sufficient for the extraction of object features, and accompanied with heavy computational costs. Recent studies have shown that convolutional neural network algorithm has made a significant progress in computer vision, especially Faster R-CNN. However, this algorithm mainly detects objects in natural scenes, it is not suitable for detecting small object in aerial view. In this paper, an accurate and effective vehicle detection algorithm based on Faster R-CNN is proposed. Our method fuse a hyperactive feature map network with Eltwise model and Concat model, which is more conducive to the extraction of small object features. Moreover, setting suitable anchor boxes based on the size of the object is used in our model, which also effectively improves the performance of the detection. We evaluate the detection performance of our method on the Munich dataset and our collected dataset, with improvements in accuracy and effectivity compared with other methods. Our model achieves 82.2% in recall rate and 90.2% accuracy rate on Munich dataset, which has increased by 2.5 and 1.3 percentage points respectively over the state-of-the-art methods.
The purpose of this study is to compare the models of Deep Learning-based Convolution Neural Network(CNN) for concrete crack detection. The comparison models are AlexNet, GoogLeNet, VGG16, VGG19, ResNet-18, ResNet-50, ResNet-101, and SqueezeNet which won ImageNet Large Scale Visual Recognition Challenge(ILSVRC). To train, validate and test these models, we constructed 3000 training data and 12000 validation data with 256×256 pixel resolution consisting of cracked and non-cracked images, and constructed 5 test data with 4160×3120 pixel resolution consisting of concrete images with crack. In order to increase the efficiency of the training, transfer learning was performed by taking the weight from the pre-trained network supported by MATLAB. From the trained network, the validation data is classified into crack image and non-crack image, yielding True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and 6 performance indicators, False Negative Rate (FNR), False Positive Rate (FPR), Error Rate, Recall, Precision, Accuracy were calculated. The test image was scanned twice with a sliding window of 256×256 pixel resolution to classify the cracks, resulting in a crack map. From the comparison of the performance indicators and the crack map, it was concluded that VGG16 and VGG19 were the most suitable for detecting concrete cracks.
Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
한국정보기술학회논문지
/
제17권6호
/
pp.103-114
/
2019
주파수변조연속파형(FMCW) 레이더 시스템을 사용하는 이동 객체탐지가 최근 각광을 받고 있다. 레이더 객체탐지는 탐지범위 내 존재하는 고정된 객체 및 클러터들로부터 반사되는 잡음신호로 인해 매우 도전적인 문제이다. 본 논문에서는 FCMW 레이다를 이용하여 잡음배경하 이동객체탐지를 위해 강인한 주성분분석법(RPCA)을 이용한다. 먼저 원 레이더 입력신호에 보상과 보정을 적용한다. 다음 경사하강법을 사용하는 RPCA가 저계수의 성질을 갖는 잡음배경 모델을 구하기 위해 사용된다. 본 논문에서는 RPCA 계산을 위해 소요계산량이 적은 새로운 업데이트 알고리즘을 제안한다. 마지막으로 이동객체는 자동 다중스케일에 기반한 피크 탐지법에 의해 정위한다. 모든 단계는 슬라이딩 윈도우 방법 기반하여 처리된다. 제안된 방법을 타 RPCA 기반의 방법들과 다양한 실험 시나리오 상에서 비교했을 때, 처리 속도와 정확도 척도에서 우수한 결과를 보였다.
목적 : 방사선치료 시 자세 및 치료부위의 재현성을 유지하기 위해 Port film을 통한 정도관리가 이루어져 왔으며 Mega Voltage Imaging (MVI) System(mvis)이 출현한 이후로 많은 발전을 이루어 현재는 필름과 Electronic portal Image Device(EPID)를 통한 정도관리가 함께 이루어지고 있다. 이에 본 논문에서는 현재 사용하고 있는 EPID 시스템의 소개와 amorphous silicon (aSi) type EPID가 Intersity Modulated Radiation Therapu(IMRT)에서 film dosimetry를 대체할 수 있는지에 대한 가능성을 분석하였다. 대상 및 방법 : Varian 21EX의 aSi type EPID와 Varian 6EX의 LC type EPID를 통해 FDD, Gantry 회전에 따른 재현성 분석과 EPID 출/입시 FDD에 따른 시간분석을 하였으며 Alderson Rando phantom을 이용하여 Couch & Gantry rotation에 따른 영상획득 가능범위를 분석하였다. aSi type EPID를 대상으로 Las Vegas phantom과 물팬텀으로 공간분해능과 대조도 분해능을 비교하였으며 Dynamic Multileaf collimator(DMLC)영상에 대해 저감도 측정용 필름과 EPID로 분석하여 IMRT의 정도관리 적용가능성을 시험하였다. 결과 : aSi type EPID와 LC type EPID 재현성은 출/입시 1mm 이내로 우수하게 나타났으나 Gantry 회전에 따른 재현성은 각각 ${\pm}3\;mm,\;{\pm}2\;mm$였으며 EPID의 출/입시 focus detector distance(FDD)에 따른 시간분석은 14초에서 17초로 측정되었다. Las Vegas phantom을 이용한 공간분해능과 대조도분해능 비교 시 표면과 물 팬텀 10, 20 cm 깊이에서 측정해 보았을 때 EPID가 선량율과 영상획득시간, 영상획득방법, frame수에 따라 달라짐을 확인할 수 있었으며, EPID로 영상획득 가능 범위를 분석해보면 film보다 손쉬운 측정이 가능한 것으로 나타났다. 저감도측정용 필름과 EPID를 통해 DMLC측정을 통한 IMRT 정도관리 결과 필름과 같은 값을 나타내었다. 결론 : EPID에 관한 여러 가지 평가를 통한 적절한 정보제공을 통해 EPID 사용, 관리 시 필요한 정보를 획득 할 수 있었으며 EPID를 통해 얻은 영상이 digital data라는 점에 착안해 적절한 정도관리가 어려운 IMRT의 분야에서 필름을 통한 주기적 점검의 대체수단으로 사용가능성이 있음을 알 수 있었다. 특히 point-dose 측정시 사용하는 diode나 전리조(lonization chamber)를 통해 평가하기 어려운 IMRT의 sliding window영상에 대한 적절한 평가와 MLC에서 leaf사이의 누설선량과 소조사면에서의 DMLC 움직임에 대한 정확한 평가가 기대된다.
목 적: 세기조절 방사선치료의 환자별 정도관리는 이온전리함을 이용한 일정 지점에서의 절대 선량 측정과 필름을 이용한 상대 선량측정의 두 단계로 구성된다. 이온전리함을 이용한 절대 선량 측정은 동일한 지점에서 치료계획상의 점선량과 실제 측정 점선량 간의 일치도에 대한 정보를 제공한다. 일반적으로 정확한 점선량을 측정하기 위해 volume이 작은 0.015 cc 이온전리함(pin point chamber, PTW, Germany)을 사용하고 있다. 그러나 이 경우 이온전리함의 볼륨이 작아 선량의 오차가 크게 나타나는 경우도 있어, 적합한 볼륨의 이온전리함 사용이 권고되기도 한다. 따라서 볼륨이 다른 세 가지의 이온전리함을 이용하여 점선량을 측정하여 치료계획상의 점 선량과 비교해 보고, 0.015 cc 이온전리함을 이용한 세기조절 방사선치료에서의 절대 점선량 측정의 유효성을 평가해 보고자 한다. 대상 및 방법: 두경부(Head & Neck) 종양의 세기조절 방사선치료가 요구되는 환자 6명을 대상으로 Sliding-window 방법의 IMRT 치료계획을 수립하였으며 치료기는 21EX(Varian, USA) 선형가속기의 6 MV 광자선을 사용하였다. 측정 조건은 120 millenium MLC를 이용하여 Gantry 0도에서 300 MU/min의 선량률로 선원-이온전리함(source-axis-distance)거리를 100 cm, 고체팬텀의 표면으로부터 5 cm 깊이에 이온전리함을 위치시켰다. 치료계획용 컴퓨터(CAD-Plan, USA)에서 결정된 결과를 0.015 cc(pin point, type 31014, PTW, Germany), 0.125 cc(micro type 31002, PTW, Germany ), 0.6 cc(famer type 30002, PTW, Germany) 전리함에 각각 조사하여 측정치를 비교 분석하였다. 측정점은 선량값의 변화가 상대적으로 적은 선량 저변동 영역(Low-gradient area)에 위치시켰다. 결 과: 각각의 이온전리함을 이용하여 측정한 결과 0.015 cc의 경우 평균 ${\pm}0.91%$, 0.125 cc의 경우 ${\pm}0.52%$, 0.6 cc의 경우 ${\pm}0.76%$로 0.125 cc 이온전리함의 경우가 모든 측정조건에서 가장 적은 오차를 보였다. 결 론: 세기조절 방사선치료에 있어서 선량의 평가는 매우 중요하다. 방사선치료가 정밀해지는 만큼 정확한 선량평가가 이루어져야 한다. 점선량을 평가하기 위해 제작된 0.015 cc 이온전리함은 작은 출력신호와 큰 신호 대 잡음비가 절대 선량 측정 시 선량오차를 발생시키는 큰 요인으로 작용할 수 있다. 반면에 이온전리함의 볼륨이 큰 경우 출력신호가 크므로 정확한 선량을 반영할 수 있으나, 작은 측정점에 이온전리함을 정확히 위치시키기 어려워 절대 점선량을 측정하기 어려운 단점이 있다. 따라서 본 연구의 결과에서 본 바와 같이 세기조절 방사선치료의 절대 점선량 측정에는 오차가 상대적으로 적은 0.125 cc 이온전리함의 사용이 고려되어야 한다.
본 논문은 데이타스트림 환경에서 연속질의를 효율적으로 처리하는 방법을 다룬다. 먼저, 기존의 질의 처리 방법을 데이타 엘리먼트와 질의 중에서 어느 것을 먼저 선택하고 수행을 시작하느냐에 따라서, 서로 이원적인 두 가지 방법인 데이타-이니셔티브(data-initiative)와 질의-이니셔티브(query-initiative)로 분류한다. 이러한 분류는 기존의 질의 처리 연구에서 데이타와 질의를 서로 다르게(asymmetrically) 취급하였다는 것에 기인한다. 기존의 연속질의 처리에서는 이원적인 질의 처리 방법 중에서 데이타-이니셔티브 방법만이 사용되었기 때문에, 질의-이니셔티브 방법에서 얻을 수 있는 성능 상의 이점이 간과되었다. 이러한 문제를 해결하기 위해, 데이타와 질의를 동등하게(symmetrically) 볼 수 있다는 점에 착안한다. 본 논문에서는 데이타와 질의의 이원성 모델(Duality Model of Data and Queries)을 제안하고 이 모델에 기반하여 연속질의 처리 문제를 다차원 공간에서의 공간조인 문제로 변환하는 새로운 관점을 제시한다. 그리고, 공간조인 기반 연속질의 처리 알고리즘인 Spatial Join CQ를 제안한다. Spatial Join CQ는 다차원 공간상에 영역으로 표현된 데이타 엘리먼트들의 집합과 질의들의 집합으로부터 서로 겹치는 쌍을 찾음으로써 연속질의를 처리한다. 제안하는 알고리즘은 대칭적인(symmetric) 연산인 공간조인으로 겹치는 영역들을 찾아냄으로써 서로 이원적인 두 가지 질의 처리 방법의 효과를 동시에 얻는다. 성능 평가 결과, 제시하는 알고리즘은 기존의 방법에 비해서 단순 선택 연속질의는 최대 36배, 슬라이딩 윈도우 조인 연속질의는 최대 7배의 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.