• 제목/요약/키워드: Window Material

검색결과 387건 처리시간 0.029초

PVC 창호의 구성에 따른 단열성능 예측에 관한 연구 (Study on Estimate of Thermal Resistance of PVC Frame Window Due to Material Composition)

  • 성욱주;이진성;조수;장철용;백상훈;송규동
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1075-1080
    • /
    • 2006
  • Purpose of this study is proposal of estimating method about window thermal performance that based on KS F 2278 'Test method of thermal resistance for windows and doors' due to material composition of PVC frame window. First step of this study is research of present state about material composition of PVC frame window. Second is selection of main effective elements about window thermal resistance. For example, composition of Glazing, Frame area ratio of total window area, frame width, opening type, area of heat transfer and so on. Third is multiple regression analysis about thermal performance of PVC frame window due to main effective elements. It produces equations of multiple regression analysis due to opening type. Case of sliding window is $Y=0.149+0.034X_g+0.248X_{far}$, 4track sliding is $Y=0.584+0.175X_g+1.355X_{far}-0.008X_{fw}$, Tilt & Turn window is $Y=-0.161+0.076X_g+0.576X_{far}+0.0008X_{fw}$.

  • PDF

FRP 음향창의 음향성능 설계기법 연구 (Acoustic Performance Study of FRP Acoustic Window)

  • 서영수;강명환;신구균;전재진
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.890-896
    • /
    • 2011
  • For developing acoustic window, transmission loss in accordance with incident angle was calculated and compared with measurement results. In design stage, the material choice of acoustic window is very important because the material is one of main parameters of transmission loss and structural strength. In order to analyze the effect of material properties on transmission loss, the parametric studies were carried out and the results were discussed in this paper. And, to verify the design specification of acoustic window, measurement was carried out and the results were compared and analyzed.

FRP 음향창의 음향성능 설계기법 연구 (Acoustic performance study of FRP acoustic window)

  • 강명환;서영수;신구균;전재진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.285-290
    • /
    • 2011
  • For developing acoustic window, transmission loss in accordance with incident angle was calculated and compared with measurement results. In design stage, the material choice of acoustic window is very important because the material is parameter of transmission loss and structural strength. In order to analyze the effect of material properties on transmission loss, the parametric studies were carried out and the results were discussed in this paper.

  • PDF

Self-Illuminated Smart Window Based on Polymer-Dispersed Liquid Crystal Mixed with Cu-doped ZnS

  • Kim, Eun Mi;Heo, Gi-Seok
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.562-567
    • /
    • 2022
  • Novel self-illuminated smart windows were fabricated consisting of Cu-doped ZnS (ZnS:Cu) powder and polymer-dispersed liquid crystal (PDLC). This smart window shows not only switchable transparency but also self-illumination without any attachable luminous body. Its electro-optical characteristics, transmittance, and luminance were investigated in relation to various applied voltages and composition ratios. The optical transmittance and luminous intensity increased with increasing applied voltages. However, the optical transmittance decreased with increasing ZnS:Cu powder content. One of the self-illuminated smart windows, which was fabricated with 9 wt% of ZnS:Cu, achieved the optical transmittance of 60.5% (at 550 nm) and the luminance of 11.0 cd/m2 at 100 V. This smart window could be used as a normal switchable smart window in daytime and light-emitting signage at night.

자가발전 스마트 액정 윈도우를 위한 염료감응 태양전지 서브 모듈 설계 및 평가 (Design and Evaluation of Dye-Sensitized Solar Cell Submodule for Self-Powered Smart Liquid Crystal Window)

  • 오병윤
    • 한국전기전자재료학회논문지
    • /
    • 제37권5호
    • /
    • pp.494-499
    • /
    • 2024
  • The possibility of a dye-sensitized solar cell (DSSC) submodule was evaluated as an independent power source that can drive a smart liquid crystal window (SLW) that selectively blocks sunlight when electricity is applied. In order to save energy and increase the functionality of buildings, SLW operation was supplied directly from DSSC submodule, rather than connecting to the existing power system and external power sources. It was confirmed that the SLW can control light transmittance through self-generation using the DSSC submodule composed of 6 cells at low light of 2,500 lux. These results imply that there is a high possibility of combining smart windows and DSSCs suitable for window-type building-integrated photovoltaic (BIPV) systems. DSSCs, which can self-generate power in low light, are expected to increase their usability in urban BIPV systems through combination with smart window technology.

고어텍스를 이용한 제1형 갑상연골성형술 (Thyroplasty Type I using Gore-Tex)

  • 유영삼
    • 대한후두음성언어의학회지
    • /
    • 제18권1호
    • /
    • pp.16-21
    • /
    • 2007
  • Many kinds of materials have been used up to now for vocal fold paralysis. Although silastic block has been the most popular material, some difficulties in carving, positioning, and placing have been the causes to find more easily applicable materials. Hy-droxylapatite, gelfoam, hyaluronic acid and fat have been suggested and used for this purposes with some limitations. During last decade, Gore-Tex was introduced and replacing old materials and showed good surgical results with less difficulties. This material is biocompatible and familiar to surgeons because it had been invented in 1960's. In addition it is easy to shape and place Gore-Tex into the window with many clinical experiences. In some problem cases, it is easy to remove from the body with less damage to surrounding tissue. The basic surgical techniques are as follows. 1) Creating window. 2) Positioning and placing the material. 3) Immobilizing the material and closing the window. The modified methods ae introduced in details with figures.

  • PDF

소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰 (A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome)

  • 정우진;한승진;김원호;신구균;전재진
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.729-738
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great importance for the sonar performance in ship. The purpose of this study was to investigate the measurement and analysis method for the acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal were discussed.

소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰 (A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome)

  • 정우진;한승진;김원호;신구균;전재진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1183-1189
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great Importance for the sonar performance in ship. The purpose of This study was to investigate the measurement and analysis method for me acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal wet-e discussed

  • PDF

PV 일체형 차세대 스마트 윈도우 기술개발 동향 (Technology Development Trends of Self-Powered Next Generation Smart Windows)

  • 변선호
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.753-764
    • /
    • 2015
  • Among several types of energy saving smart window technologies, the leader, the dynamic EC (electrochromic) window one needs integrated PV (photovoltaics), to minimize expensive electrical wiring as well as to obviate the need for external energy. Self-powered smart windows were reviewed according to PV types used. DSSCs (dye sensitized solar cells) were found to be compatible with EC cells, to have several categories of next generation smart windows such as PECCs (photoelectrochromic cells), PVCCs (photovoltachromic cells), EC polymer PECCs. In addition silicon solar cells and third generation solar cells were investigated. They are summarized in a table showing their advantages and disadvantages respectively for a fast comparison. The strategy to expedite the commercialization of these next generation smart windows includes developing retrofit smart window coverings for use on flexible polymer substrates adhered to the inside surface of a window and easily replaced after use for upto 10 years.

액정 스마트윈도우의 신뢰성에 대한 연구 (A Study on Reliability of Liquid-Crystal for Smart Window)

  • 박병규;김순금;이승우;박계춘;이진
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.471-474
    • /
    • 2020
  • In recent years, the challenge of higher energy efficiency has emerged as urban buildings have become taller, and the area of window glasses has increased. To address the problem of energy efficiency in buildings, research on smart windows is being actively conducted. In this study, an accelerated experiment for thermal stability was conducted to fabricate a liquid crystal cell applicable to external windows. It was confirmed from the study that the function is maintained even in a high-temperature external environment through the change in transmittance by voltage. Compared with the initial transmittance, after the passage of time, the smart window cell to which the sealant was applied showed a small change in transmittance of 1~2%. This result confirmed the thermal stability of the liquid crystal-based smart window.