Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.6.4

Self-Illuminated Smart Window Based on Polymer-Dispersed Liquid Crystal Mixed with Cu-doped ZnS  

Kim, Eun Mi (Green Energy and Nano Technology R&D Group, Korea Institute of Industrial Technology)
Heo, Gi-Seok (Green Energy and Nano Technology R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.6, 2022 , pp. 562-567 More about this Journal
Abstract
Novel self-illuminated smart windows were fabricated consisting of Cu-doped ZnS (ZnS:Cu) powder and polymer-dispersed liquid crystal (PDLC). This smart window shows not only switchable transparency but also self-illumination without any attachable luminous body. Its electro-optical characteristics, transmittance, and luminance were investigated in relation to various applied voltages and composition ratios. The optical transmittance and luminous intensity increased with increasing applied voltages. However, the optical transmittance decreased with increasing ZnS:Cu powder content. One of the self-illuminated smart windows, which was fabricated with 9 wt% of ZnS:Cu, achieved the optical transmittance of 60.5% (at 550 nm) and the luminance of 11.0 cd/m2 at 100 V. This smart window could be used as a normal switchable smart window in daytime and light-emitting signage at night.
Keywords
Self-illuminated; ZnS:Cu; Polymer-dispersed liquid crystal; Smart window;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Liu, X. Liu, and Z. Zhen, Mater. Lett., 163, 142 (2016). [DOI: https://doi.org/10.1016/j.matlet.2015.10.060]   DOI
2 D. C. Choe, G. W. Kim, R. Lampande, and J. H. Kwon, SID 2015 DIGEST, 46, 821 (2015). [DOI: https://doi.org/10.1002/sdtp.10343]   DOI
3 S. W. Shin, J. P. Oh, C. W. Hong, E. M. Kim, J. J. Woo, G. S. Heo, and J. H. Kim, Applied Materials and Interfaces, 8, 1098 (2016). [DOI: https://doi.org/10.1021/acsami.5b07594]   DOI
4 A. G. Fischer, J. Electrochem. Soc., 110, 733 (1963). [DOI: https://doi.org/10.1149/1.2425863]   DOI
5 T. Uchida, M. Shibasaki, T. Matsuzaki, and Y. Nagata, Appl. Phys. Express, 6, 041604 (2013). [DOI: https://doi.org/10.7567/APEX.6.041604]   DOI
6 R. Onodera, Y. Seki, S. Seki, K. Yamada, Y. Sawada, and T. Uchida, Appl. Phys. Express, 6, 026503 (2013). [DOI: https://doi.org/10.7567/APEX.6.026503]   DOI
7 G. D. Filpo, K. Armentano, E. Pantuso, A. I. Mashin, G. Chidichimo, and F. P. Nicoletta, Liq. Cryst., 46, 986 (2019). [DOI: https://doi.org/10.1080/02678292.2019.1566506]   DOI
8 Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P. S. Lee, and Y. Long, Adv. Energy Mater., 9, 1902066 (2019). [DOI: https://doi.org/10.1002/aenm.201902066]   DOI
9 N. Aste, M. Buzzetti, C. Del Pero, R. Fusco, D. Testa, and F. Leonforte, Energy Procedia, 105, 967 (2017). [DOI: https://doi.org/10.1016/j.egypro.2017.03.427]   DOI
10 X. Guo, Z. Xu, J. Huang, Y. Zhang, X. Liu, and W. Guo, Mater. Lett., 244, 92 (2019). [DOI: https://doi.org/10.1016/j.matlet.2019.02.070]   DOI
11 L. Yang, X. Xu, Y. Yuan, Z. Li, and S. He, Optical Materials Express, 9, 4483 (2019). [DOI: https://doi.org/10.1364/OME.9.004483]   DOI
12 S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, and H. Manuspiya, Solid State Sci., 14, 299 (2012). [DOI: https://doi.org/10.1016/j.solidstatesciences.2011.12.005]   DOI
13 T. Kryshtab, V. S. Khomchenko, J. A. Andraca-Adame, L. V. Zavyalova, N. N. Roshchina, V. E. Rodionov, and V. B. Khachatryan, Thin Solid Films, 515, 513 (2006). [DOI: https://doi.org/10.1016/j.tsf.2005.12.284]   DOI
14 M. Warkentin, F. Bridges, S. A. Carter, and M. Anderson, Phys. Rev. B, 75, 075301 (2007). [DOI: https://doi.org/10.1103/PhysRevB.75.075301]   DOI
15 E. M. Kim, I.-S. Choi, J.-P. Oh, Y.-B. Kim, J.-H. Lee, Y.-S. Choi, J.-D. Cho, Y.-B. Kim, and G.-S. Heo, Jpn. J. Appl. Phys., 53, 095505 (2014). [DOI: https://doi.org/10.7567/JJAP.53.095505]   DOI