Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.12.753

Technology Development Trends of Self-Powered Next Generation Smart Windows  

Pyun, Sun Ho (Korea Institute of Science and Technology Information, ReSEAT Program)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.12, 2015 , pp. 753-764 More about this Journal
Abstract
Among several types of energy saving smart window technologies, the leader, the dynamic EC (electrochromic) window one needs integrated PV (photovoltaics), to minimize expensive electrical wiring as well as to obviate the need for external energy. Self-powered smart windows were reviewed according to PV types used. DSSCs (dye sensitized solar cells) were found to be compatible with EC cells, to have several categories of next generation smart windows such as PECCs (photoelectrochromic cells), PVCCs (photovoltachromic cells), EC polymer PECCs. In addition silicon solar cells and third generation solar cells were investigated. They are summarized in a table showing their advantages and disadvantages respectively for a fast comparison. The strategy to expedite the commercialization of these next generation smart windows includes developing retrofit smart window coverings for use on flexible polymer substrates adhered to the inside surface of a window and easily replaced after use for upto 10 years.
Keywords
Self-powered smart window; ECW (electrochromic window); VT (visible transmittance); PV (photovoltaics); DSSC; PECC (photoelectrochromic cell); PVCC (photovoltachromic cell); Energy saving; Solar heat gain coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Cuce and S. B. Riffat, Renew. Sust. Energ. Rev., 41, 695 (2015).   DOI
2 Efficient Windows Collaborative, Low-E Coatings, http://www.commercialwindows.org/lowe.php. (2015).
3 K. Sawyer, Building Technologies Office, U. S. Department of Energy, Windows and Building Envelope Research and Development: Roadmap for Emerging Technologies, 30/74 (2014).
4 K. Sawyer, Building Technologies Office, U. S. Department of Energy, R&D Roadmap for Emerging Window and Building Envelope Technologies, 30 (2014).
5 S. K. Deb, S. H. Lee, C. E. Tracy, J. R. Pitts, B. A. Gregg, and H. M. Branz, Electrochimica Acta, 46, 2125 (2001). [DOI: http://dx.doi.org/10.1016/S0013-4686(01)00390-5]   DOI
6 C. G. Granqvist, Thin Solid Films, 564, 1 (2014). [DOI: http://dx.doi.org/10.1016/j.tsf.2014.02.002]   DOI
7 S. S. Kalagi, S. S. Malib, D. S. Dalavib, A. I. Inamdarc, H. S. Im, and P. S. Patil, Synthetic Met., 161, 1105 (2011). [DOI: http://dx.doi.org/10.1016/j.synthmet.2011.03.028]   DOI
8 S. J. You and Y. E. Sung, NICE, 26, 519 (2008).
9 Smart Windows: Energy Efficiency with a View, http://www.nrel.gov/news/features/feature_detail.cfm/feature_id=1555 (2010).
10 A. Cannavale, M. Manca, L. D. Marco, R. Grisorio, S. Carallo, G. P. Suranna, and G. Gigli, ACS Appl. Mater. Interfaces, 6, 2415 (2014). [DOI: http://dx.doi.org/10.1021/am404800m]   DOI
11 D. K. Benson and H. M. Branz, Sol. Energ. Mat. Sol. C, 39, 203 (1995). [DOI: http://dx.doi.org/10.1016/0927-0248(95)00041-0]   DOI
12 J. N. Bullock, C. Bechinger, D. K. Benson, and H. M. Branz, J. Non-Cryst. Solids, 198, 1163 (1996). [DOI: http://dx.doi.org/10.1016/0022-3093(96)00105-6]
13 L. M. Huang, C. W. Hu, H. C. Liu, C. Y. Hsu, C. H. Chen, and K. C. Ho, Sol. Energ. Mat. Sol. C., 99, 154 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.036]   DOI
14 C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, and B. A. Gregg, Nature, 383, 608 (1996). [DOI: http://dx.doi.org/10.1038/383608a0]   DOI
15 A. Hauch, A. Georg, S. Baumgartner, U. O. Krasovec, and B. Orel, Electrochim. Acta, 46, 2131 (2001). [DOI: http://dx.doi.org/10.1016/S0013-4686(01)00391-7]   DOI
16 U. O. Krasovec, A. Georg, A. Georg, Volker Wittwer, J. Luther, M. Topic, Sol Energ Mat Sol C, 84, 369 (2004). [DOI: http://dx.doi.org/10.1016/j.solmat.2004.01.043]   DOI
17 G. Leftheriotis, G. Syrrokostas, and P. Yianoulis, Sol. Energ. Mat. Sol. C, 96, 86 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.09.014]   DOI
18 U. O. Kra?ovec, Andre. Georg, Anne. Georg, M. Topic, and G. Drazic, JSST, 36, 45 (2005).
19 A. Georg and U. O. Krasovec, Thin Solid Films, 502, 246 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.07.291]   DOI
20 G. D. Filpo, S. Mormile, F. P. Nicoletta, and G. Chidichimo, J. Power Sources, 195, 4365 (2010). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2010.01.037]   DOI
21 J. J. Wu, M. D. Hsieh, W. P Liao, W. T. Wu, and J. S. Chen, ACS Nano, 3, 2297 (2009). [DOI: http://dx.doi.org/10.1021/nn900428s]   DOI
22 A. Cannavale, M. Manca, F. Malara, L. D. Marco, R. Cingolani, and G. Gigli, Energy Environ. Sci., 4, 2567 (2011). [DOI: http://dx.doi.org/10.1039/c1ee01231b]   DOI
23 A. Cannavale, M. Manca, L. D. Marco, R. Grisorio, S. Carallo, G. P. Suranna, and G. Gigli, ACS Appl. Mater. Interfaces, 6, 2415 (2014). DOI: http://dx.doi.org/10.1021/am404800m]   DOI
24 F. Malara, A. Cannavale, and G. Gigli, Proc. of Photovoltaics: Res. Appl., 23, 290 (2015). [DOI: http://dx.doi.org/10.1002/pip.2422]   DOI
25 Y. Li, J. Hagen, and D. Haarer, Synthetic Met., 94, 273 (1998). [DOI: http://dx.doi.org/10.1016/S0379-6779(98)00013-7]   DOI
26 C. Y. Hsu, K. M. Lee, J. H. Huang, K.R.J. Thomas, J. T. Lin, K. C. Ho, J. Power Sources, 185, 1505 (2008). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2008.09.031]   DOI
27 S. Yang, J. Zheng, M. Li, and C. Xu, Sol. Energ. Mat. Sol. C, 97, 186 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.09.038]   DOI
28 E. Amasawa, N. Sasagawa, M. Kimura, and M. Taya, Adv. Energy. Mater., 4, 1400379 (2014). [DOI: http://dx.doi.org/10.1002/aenm.201400379]   DOI
29 K. Wang, H. Wu, Y. Meng, Y. Zhang, and Z. Wei, Energy Environ. Sci., 5, 8384 (2012). [DOI: http://dx.doi.org/10.1039/c2ee21643d]   DOI
30 C. H. Wu, C. Y. Hsu, K. C. Huang, P. C. Nien, J. T. Lin, and K. C. Ho, Sol. Energ. Mat. Sol. C, 99, 148 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.033]   DOI
31 B. N. Reddy, R. Mukkabla, M. Deepa, and P. Ghosal, RSC Adv., 5, 31422 (2015). [DOI: http://dx.doi.org/10.1039/C5RA05015D]   DOI
32 R. Sydam, R. K. Kokal, and M. Deepa, ChemPhysChem, 16, 1042 (2015) [DOI: http://dx.doi.org/10.1002/cphc.201402862]   DOI
33 K. S. Ahn, S. J. Yoo, M. S. Kang, J. W. Lee, and Y. E. Sung, J. Power Sources, 168, 533 (2007). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006.12.114]   DOI
34 K. F. Chen, C. H. Liu, C. K. Hsieh, C. L. Lin, H. K. Huang, C. H. Tsai, and F. R. Chen, J. Power Sources, 247, 939 (2014). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2013.08.103]   DOI
35 R. R. Lunt and V. Bulovic, Appl. Phys. Lett., 98, 113305-1 (2011). [DOI: http://dx.doi.org/10.1063/1.3567516]   DOI
36 A. L. Dyer, R. H. Bulloch, Y. Zhou, B. Kippelen, J. R. Reynolds, and F. Zhang, Adv. Mater., 26, 4895 (2014). [DOI: http://dx.doi.org/10.1002/adma.201401400]   DOI
37 A. Cannavale, G. E. Eperon, P. Cossari, A. Abate, H. J. Snaith, and G. Gigli, Energy Environ. Sci., 8, 1578 (2015). [DOI: http://dx.doi.org/10.1039/C5EE00896D]   DOI
38 G. E. Eperon, V. M. Burlakov, A. Goriely, and H. J. Snaith, ACS Nano, 8, 591 (2014). [DOI: http://dx.doi.org/10.1021/nn4052309]   DOI