• Title/Summary/Keyword: Winding simulation

Search Result 291, Processing Time 0.027 seconds

The Analysis of Temperature on Superconducting Parallel Bifilar Winding (초전도 병렬 무유도권선의 온도 해석)

  • Oh, Yun-Sang;Lee, Sang-Jin;Bae, Joon-Han;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.134-136
    • /
    • 1995
  • A superconducting parallel bifilar winding shows the phenomenon which is known as 'fast quench'. We analyzed the temperature characteristics on the winding by computer simulation, and confirmed theses by experiment. The temperature of the quenched point rose gradually as the source voltage was increased. The temperature changed radically as first, but had a gentle slope after a few milliseconds. As the source voltage was large, the initial quenched length also increased. The points in this quenched length showed almost the same temperature. but the points where initial quench had not occurred showed radical temperature gradient. We could observe that the temperature of the whole wire increased simultaneously as the fast quench occurred on the superconducting parallel bifilar winding, because a number of quenched points in that wire appeared at the same time.

  • PDF

The Starting Characteristics of Single Phase Induction Motor by Control of Phase and Voltage (위상각과 전압제어에 의한 단상유도전동기의 기동특성)

  • Sung, K.M.;Park, S.K.;Choi, Y.O.;Cho, G.B.;Oh, K.G.;Baek, H.L.;Park, H.A.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.350-352
    • /
    • 1995
  • The starting characteristics of single phase induction motor(SPIM) is described by control of phase and voltage. Auxiliary winding voltage is controlled by DC amplifier and phase is integrator. These processes enable comparison of torque with slip in each voltage and phase angle variations. Simulation and experimentation results of the motor's torque-slip characteristics using the controlled auxiliary winding voltage and phase angle arc shown and discussed. As a results, starting time is fast and main winding current is small when auxiliary winding voltage is low than rating voltage and starting characteristics is good in phase angle $90^{\circ}$.

  • PDF

Modeling and Simulation of the Linear Density Variation by Repetitive MD-Impacts in a Winding/Unwinding Control Process (Winding/Unwinding 제어공정에서 반복 충격에 기인한 MD-밀도 변동의 모델링과 시뮬레이션)

  • Huh You;Kim Hyung-J.;Kim Jong-S.;Chun Doo-H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.321-322
    • /
    • 2006
  • In many manufacturing processes such as web formation, manufacturing of paper and nonwoven, fabric weaving, etc., planar sheets are transported and at the same time appropriate tension is imposed. The input material rolled up on beams is fed by unwinding the beam and the processed is then taken up on beams by winding it. While processed, the planar sheets are thrown under the processing load of impulse form, which causes irregular thickness of the processed sheet. To improve the quality of the product, a dynamic model is needed and the dynamic characteristics is to be analyzed by simulation. This study shows that density variation dynamics of the in-process-sheet in the machine direction can be described at each moment of disturbing impacts in forms of difference equations, while the impacts and tension, the time-dependency of the material properties were taken into account. Simulation showed the most serious variation of the density occurred in the process starting phase. The starting velocity curve with step form showed the least variation of the density. As the time order of the function of the starting velocity cure becomes higher, the density variation gets greater.

  • PDF

A Study on LLC Resonant Transformer Design with the Winding Method of Automatic Type suitable for LLC Resonant Converter (LLC 공진 컨버터에 적합한 자동화 권선 LLC 공진 변압기 설계에 관한 연구)

  • Bae, Jun-Hyung;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1108-1111
    • /
    • 2019
  • This paper presents the comprehensive transformer design methodology with the winding method of automatic type suitable for LLC resonant converter. The problem with conventional LLC resonant transformer is that it is difficult to implement the winding method of automatic type because all windings are wound in one bobbin. Therefore, the LLC resonant transformer, which is capable of the winding method of automatic type to multiple section bobbin without insulation tape and barrier tape, is proposed in this paper and the design procedure of the proposed LLC resonant transformer is also shown. Modeling and analysis of the proposed LLC resonant transformer using Maxwell 3D simulation tool are described in detail and a protype 150W LLC resonant converter using the proposed LLC resonant transformer manufactured by 3D modelling is also verified through the experimental test.

Tension Control of a Winding Machine using Time-delay Estimation (시간 지연 추정 기법을 이용한 권취기의 장력 제어 알고리즘)

  • Heo, Jeong-Heon;You, Byungyong;Kim, Jinwook
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • We propose a tension controller based on a time-delay estimation (TDE) technique for a winding machine. Firstly, we perform the necessary calculations to derive a mathematical model of the winding machine. In this sense, it is revealed that the roll radius of the winding machine is characteristically seen to be increasing or decreasing during the winding process. That being said, it is noted that the parameters of the winding machine are coupled and constantly changing during this process. Understandably then, it is noted that the model is shown to be nonlinear and time-varying. Secondly, we propose the way to apply the TDE based controller which is the so-called Time-delay Control (TDC). The TDC utilizes the time-delayed information intentionally to compensate the nonlinear and time-varying characteristics. As we have seen, the proposed controller consists of two parts: one is a TDE component, and the other is an error dynamics component which is defined by a user. In a computer simulation based on the Matlab/Simulink program, the proposed controller is compared with a conventional PID controller, which is widely used in the tension control of the winding machine. The proposed controller reduces the incidence of overshoot and steady-state error in the tension control, as compared to the conventional PID controller.

Analysis of Leakage Inductance for Toroidal Type Flyback Transformer (토로이달 타입 플라이백 변압기의 누설 인덕턴스 해석)

  • Park, Chang-Soo;Kang, Byeong-Geuk;Shin, Kyoung-Gu;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.164-172
    • /
    • 2014
  • This paper presents an analysis of a leakage inductance for a toroidal type flyback transformer. The equation to calculate the leakage inductance is derived using the MMF diagram of the transformer. The analysis for the different types of the cores and winding structures is also provided using the FEM simulation. The winding structures minimizing the leakage inductance are finally discussed from the simulation and experimental results.

An Efficient Model to Calculate Axial Natural Vibration Frequency of Power Transformer Winding

  • Li, Kaiqi;Guo, Jian;Liu, Jun;Zhang, Anhong;Yu, Shaojia
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.431-436
    • /
    • 2016
  • In the design of transformer winding, natural vibration frequency is an important parameter. This paper presents a 2D model to calculate axial vibration natural frequency of power transformer winding based on the elastic dynamics theory, and according to the elastic support equivalent principle of radial pressboards. The 3D model to calculate natural vibration frequency can be simplified as a 2D one as the support of pressboards on the winding is same. It is verified that results of the 2D model are consistent with those of 3D one, but the former can achieve much higher calculation efficiency. It shows that increasing the width and number of pressboards can improve axial natural frequency through formula analysis and simulation, and also the relations between the changes of axial pre-compression and axial natural vibration frequency on the windings are investigated. Finally, the proposed 2D model's effectiveness is proved when compared with tested ones.

Improvement of Low Speed Stability of CMG Gimbal Using Full-pitch Distributed Winding (전절권 분포형 권선을 통한 제어모멘트자이로 김블의 저속 안정성 개선 연구)

  • Lee, Jun-yong;Lee, Hun-jo;Oh, Hwa-suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • The electromagnetic forces generate a torque on the gimbal motor, and changes in the coil current causes torque ripple. This affects the gimbals' speed and results to unstable satellite attitude. It is therefore essential to reduce the torque ripple of the gimble motor with the aim of improving the attitude control accuracy of the satellite. This paper theoretically analyzes the torque generated from the modeling of a motor for general concentrated winding and distributed winding. The prototype was designed and fabricated through selection of the winding that reduces the torque ripple through simulation results. The results of the magnetic fields' theoretical analysis and the back electromotive force of the prototype were compared with the calibrated results for verification of conformity and manufacture of the design. The low-speed test proved that the torque ripple is reduced by improving the speed stability.

Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method (필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구)

  • BYUN, JONGIK;KIM, JONGLYUL;HEO, SEOKBONG;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

Design of an Adaptive Backstepping Speed Controller for the Wind Power Generation System (풍력발전시스템의 적응백스테핑 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.211-216
    • /
    • 2005
  • In this paper a robust controller using adaptive backstepping technique is proposed to control the speed of wind power generation system. To make wind power generation truly cost effective and reliable, advanced and robust control algorithms are derived to on-line adjust the excitation winding voltage of the generator based on both mechanical and electrical dynamics. This method is shown to be able to achieve smooth and asymptotic rotor speed tracking, as justified by analysis and computer simulation.