• 제목/요약/키워드: Wind-hybrid

검색결과 348건 처리시간 0.028초

Wind turbine testing methods and application of hybrid testing: A review

  • Lalonde, Eric R.;Dai, Kaoshan;Lu, Wensheng;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.195-207
    • /
    • 2019
  • This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.

Investigation on wind stability of three-tower cable-stayed-suspension hybrid bridges under skew wind

  • Xin-Jun Zhang;Li Bowen;Nan Zhou
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.427-443
    • /
    • 2024
  • By using a computational program of three-dimensional aerostatic and aerodynamic stability analysis of long-span bridges under skew wind, the dynamic characteristics and structural stability(including the aerostatic and aerodynamic stability) of a three-tower cable-stayed-suspension hybrid bridge with main span of 1 400 meters are investigated numerically under skew wind, and the skew wind and aerostatic effects on the aerostatic and aerodynamic stability of three-tower cable-stayedsuspension hybrid bridge are ascertained. The results show that the three-tower cable-stayed-suspension hybrid bridge is a longspan structure with greater flexibility, and it is more susceptible to the wind action. The aerostatic instability of three-tower cable-stayed-suspension hybrid bridges is characterized by the coupling of vertical bending and torsion of the girder, and the skew wind does not affect the aerostatic instability mode. The skew wind has positive or negative effects on the aerostatic stability of the bridge, the influence is between -5.38% and 4.64%, and in most cases, it reduces the aerostatic stability of the bridge. With the increase of wind yaw angle, the critical wind speed of aerostatic instability does not vary as the cosine rule as proposed by the skew wind decomposition method, the skew wind decomposition method may overestimate the aerostatic stability, and the maximum overestimation is 16.7%. The flutter critical wind speed fluctuates with the increase of wind yaw angle, and it may reach to the minimum value under the skew wind. The skew wind has limited effect on the aerodynamic stability of three-tower cable-stayed-suspension hybrid bridge, however the aerostatic effect significantly reduces the aerodynamic stability of the bridge under skew wind, the reduction is between 3.66% and 21.86%, with an overall average drop of 11.59%. The combined effect of skew and static winds further reduces the critical flutter wind speed, the decrease is between 7.91% and 19.37%, with an overall average decrease of 11.85%. Therefore, the effects of skew and static winds must be comprehensively considered in the aerostatic and aerodynamic stability analysis of three-tower cable-stayed-suspension hybrid bridges.

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

태양광/풍력 복합발전 시스템의 최대출력제어기 설계 (A hybrid maximum power tracker for a photovoltaic/wind hybrid power system)

  • 정상식;김시경;정영석;유권종;송진수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.134-137
    • /
    • 1998
  • In this paper, a hybrid maximum power tracker for a photovoltaic/wind hybrid power system is proposed. In the hybrid system, a direct interfacing the wind power system to the photovoltaic system gives the problems of voltage fluctuations, poor maximum power tracking, and harmonics generation associated with the random wind speed, the random solar irradiation and the pulsating torque came from the wind turbine synchronous generator and photovoltaic. To overcome these problems, a wind side DC/DC converter are proposed employing a star/delta transformer interconnected between the wind turbine side and the photovoltaic side. The control objective for each dc/dc converter is to extract maximum power from each different photovoltaic system and wind system, and transfer two different powers to the inverter and load.

  • PDF

Development of Efficient Operational Mode for Wind-Diesel Hybrid System

  • Asghar, Furqan;Kim, Se-Yoon;Kim, Sung Ho
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.554-561
    • /
    • 2014
  • Hybrid wind Diesel stand-alone power systems are considered economically viable and effective to create balance between production and load demand in remote areas where the wind speed is considerable for electric generation, and also, electric energy is not easily available from the grid. In Wind diesel hybrid system, the wind energy system is the main constitute and diesel system forms the back up. This type of hybrid power system saves fuel cost, improves power capacity to meet the increasing demand and maintains the continuity of supply in the system. Problem we face in this system is that even after producing enough power through wind turbine system, considerable portion of this power needs to be dumped due to short term oversupply of power and to maintain the frequency within close tolerances. As a result remaining portion of total energy supplied comes from the diesel generator to overcome the temporal energy shortage. This scenario decreases the overall efficiency of hybrid power system. In this study, efficient Simulink modeling for wind-diesel hybrid system is proposed and some simulations study is carried out to verify the feasibility of the proposed scheme.

Performance of Wind-Photovoltaic Hybrid Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.319-324
    • /
    • 2005
  • This paper reports the performance of Wind-PV(Photovoltaic) hybrid system. The output power of PV is affected by the environmental factors such as solar radiation and cell temperature. Also, the output power of wind system is generated with wind power. Integration of Wind and PV resources, which are generally complementary, usually reduce the capacity of the battery. This paper includes discussion on system reliability, power quality and effects of the randomness of the wind and the solar radiation on system design.

풍력 복합발전 시스템을 위한 멀티에이전트 제어 (Multi-agent Control for Wind Hybrid Power Systems)

  • 강승진;고희상;부창진;김호찬
    • 한국산학기술학회논문지
    • /
    • 제15권12호
    • /
    • pp.7451-7458
    • /
    • 2014
  • 본 논문에서는 독립된 풍력 복합발전 시스템을 대상으로 시스템의 모델링과 다양한 환경에서 체계적으로 동작시키기 위한 멀티에이전트 기반의 제어방법을 제안한다. 멀티에이전트 제어는 풍력발전기, 디젤발전기, 배터리, 부하로 구성되는 새로운 형식의 하이브리드 제어방법이고, 풍속과 배터리의 충전상태에 따라 풍력 복합발전 시스템의 운전은 14개의 모드로 나누어 수행된다. 시뮬레이션 성능평가를 통해 제안된 알고리즘이 독립된 풍력 복합발전 시스템에서 다양한 풍속변화가 존재하는 경우에도 효율적으로 운전될 수 있음을 보여준다.

Assessment of Wind Power Prediction Using Hybrid Method and Comparison with Different Models

  • Eissa, Mohammed;Yu, Jilai;Wang, Songyan;Liu, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1089-1098
    • /
    • 2018
  • This study aims at developing and applying a hybrid model to the wind power prediction (WPP). The hybrid model for a very-short-term WPP (VSTWPP) is achieved through analytical data, multiple linear regressions and least square methods (MLR&LS). The data used in our hybrid model are based on the historical records of wind power from an offshore region. In this model, the WPP is achieved in four steps: 1) transforming historical data into ratios; 2) predicting the wind power using the ratios; 3) predicting rectification ratios by the total wind power; 4) predicting the wind power using the proposed rectification method. The proposed method includes one-step and multi-step predictions. The WPP is tested by applying different models, such as the autoregressive moving average (ARMA), support vector machine (SVM), and artificial neural network (ANN). The results of all these models confirmed the validity of the proposed hybrid model in terms of error as well as its effectiveness. Furthermore, forecasting errors are compared to depict a highly variable WPP, and the correlations between the actual and predicted wind powers are shown. Simulations are carried out to definitely prove the feasibility and excellent performance of the proposed method for the VSTWPP versus that of the SVM, ANN and ARMA models.

풍력발전용 하이브리드 타워 경제성 및 하중영향 분석 (Analysis of economy and load effect of hybrid tower for wind turbine)

  • 이승민;박현철;정진화;권대용;김용천
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.185.2-185.2
    • /
    • 2010
  • With the development of wind industry, the rated power of wind turbine also increase gradually. Accordingly, the size of wind turbine tower becomes larger and larger. The tower base diameter of 2MW wind turbine is about 4m. Larger tower is expected for 4MW or 5MW turbine. Due to limitation of transportation, new type of tower with smooth transportation and effective cost is needed. In this work, a hybrid tower consisting of steel and concrete is designed and analyzed. The optimum ratio of steel and concrete of hybrid tower are calculated as well as the thickness of the concrete part. Different FE analysis including modal analysis, buckling analysis and fatigue analysis are performed to check the design of hybrid tower comparing with the steel tower. Redesign is also expected after various analysis.

  • PDF

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.