Browse > Article
http://dx.doi.org/10.12989/was.2019.29.3.195

Wind turbine testing methods and application of hybrid testing: A review  

Lalonde, Eric R. (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
Dai, Kaoshan (Department of Civil Engineering, Sichuan University)
Lu, Wensheng (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
Bitsuamlak, Girma (Department of Civil and Environmental Engineering, University of Western Ontario)
Publication Information
Wind and Structures / v.29, no.3, 2019 , pp. 195-207 More about this Journal
Abstract
This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.
Keywords
wind turbine; hybrid testing; wind tunnel; shaking table; multi-hazard;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Mosqueda, G., Stojadinovic, B. and Mahin, S.A. (2007), "Realtime error monitoring for hybrid simulation. Part I: Methodology and experimental verification", J. Struct. Eng., 133(8), 1100-1108. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1100).   DOI
2 Murray, J.A. and Sasani, M. (2017) "Collapse resistance of a seven-story structure with multiple shear-axial column failures using hybrid simulation", J. Struct. Eng., 143(5). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001746.   DOI
3 Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy, 11, 305-317. https://doi.org/10.1002/we.249.   DOI
4 Nakashima, N., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. D., 21, 79-92. https://doi.org/10.1002/eqe.4290210106.   DOI
5 Navalkar, S.T., van Solingen, E. and van Wingerden, J. (2015), "Wind tunnel testing of subspace predictive repetitive control for variable pitch wind turbines", IEEE T. Contr. Syst. T., 23(6), 2101-2116. https://doi.org/10.1109/TCST.2015.2399452.   DOI
6 Watanabe, E., Kitada, T., Sugiura, K. and Nagata, K. (2001), "Parallel Pseudo-Dynamic Seismic Loading Test on Elevated Bridge System Through the Internet", Proceedings of the 8th East Asia-Pacific Conference on Structural Engineering and Construction, Singapore, December.
7 Yalla, S.K. and Kareem, A. (2007), "Dynamic load simulator: Actuation strategies and applications", J. Eng. Mech., 133(8), 855-863. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(855).   DOI
8 Prowell, I., Veletzos, M., Elgamal, A. and Restrepo, J. (2009), "Experimental and numerical seismic response of a 65kW wind turbine", J. Earthq. Eng., 13, 1172-1190. https://doi.org/10.1080/13632460902898324.   DOI
9 Prowell, I., Elgamal, A., Uang, C. and Jonkman, J. (2010), "Estimation of seismic load demand for a wind turbine in the time domain", Proceedings of the European Wind Energy Conference 2010, Warsaw, Poland, April.
10 Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85, 67-94.   DOI
11 Ning, S.A., Hayman, G., Damiani, R. and Jonkman, J. (2015), "Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn", Proceedings of the AIAA Science and Technology Forum Exposition 2015, Kissimmee, USA, January.
12 Nunez-Casado, C., Lopez-Garcia, O., de las Heras, E.G., Cuerva-Tejero, A. and Gallego-Castillo, C. (2017), "Assembly strategies of wind turbine towers for minimum fatigue damage", Wind Struct., 25(6), 569-588. https://doi.org/10.12989/was.2017.25.6.569.   DOI
13 Rong, X., Xu, R., Wang, H. and Feng, S. (2017), "Analytical solution for natural frequency of monopile supported wind turbine towers", Wind Struct., 25(5), 459-474. https://doi.org/10.12989/was.2017.25.5.459.   DOI
14 Ramos, M.D.C., Mosqueda, G. and Hashemi, M.J. (2016), "Largescale hybrid simulation of a steel moment frame building structure through collapse", J. Struct. Eng., 142(1). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001328.   DOI
15 Rezaee, M. and Aly, A.M. (2016), "Vibration control in wind turbines for performance enhancement: A comparative study", Wind Struct., 22(1), 107-131. https://doi.org/10.12989/was.2016.22.1.107.   DOI
16 Riso National Laboratory (2002), "Guidelines for Design of Wind Turbines 2nd ed.", Copenhagen, Denmark.
17 Selig, M.S. and McGranahan, B.D. (2004), "Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines", NREL/SR-500-34515, National Renewable Energy Laboratory.
18 Ebrahimi, A. and Mardani, R. (2018), "Tip-vortex noise reduction of a wind turbine using a winglet", J. Energy Eng., 144(1). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000909.
19 Friedman, A., Dyke, S.J., Philips, B., Ahn, R., Dong, B., Chae, Y., Castaneda, N., Jiang, Z., Zhang, J., Cha, Y., Ozdagli, A.I., Spencer, Jr., B.F., Ricles, J., Christenson, R., Agrawal, A. and Sause, R. (2014), "Large-scale real-time hybrid simulation for evaluation of advanced damping system performance", J. Struct. Eng., 141(6). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001093.   DOI
20 Germanischer Lloyd (2010), "Guidelines for the Certification of Wind Turbines", Hamburg, Germany.
21 Glauert, H. (1935), "Airplane Propellers", Aerodynamic Theory, 169-360.
22 Haldar, S. and Basu, D. (2016), "Effect of Climate Change on the Reliability of Offshore Wind Turbine Foundations", Geo-Chicago 2016, Chicago, USA, August.
23 Global Wind Energy Council (2017), "Global Wind Statistics 2017", Brussels, Belgium. http://gwec.net/wpcontent/uploads/vip/GWEC_PRstats2017_EN-003_FINAL.pdf
24 Ge, M., Tian, D. and Deng, Y. (2016), "Reynolds number effect on the optimization of a wind turbine blade for maximum aerodynamic efficiency", J. Energy Eng., 142(1). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000254.
25 Hakuno, M., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam, controlled by an analogcomputer", Proceedings of the Japanese Society of Civil Engineers, 171, 1-9.   DOI
26 Hall, M., Moreno, J. and Thiagarajan, K. (2014), "Performance specifications for real-time hybrid testing of 1:50-scale floating wind turbine models", Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, USA, June.
27 Phillips, B.M. and Spencer, Jr. B.F. (2012b), "Model-based multiactuator control for real-time hybrid simulation", J. Eng. Mech., 139(2). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000493.   DOI
28 Shao, X., Reinhorn, A.M. and Sivaselvan, M.V. (2011), "Realtime hybrid simulation using shake tables and dynamic actuators", J. Struct. Eng., 137(7), 748-760.   DOI
29 Ojaghi, M., Williams, M.S., Dietz, M.S., Blakeborough, A. and Martinez, I.L. (2014), "Real-time distributed hybrid testing: coupling geographically distributed scientific equipment across the Internet to extend seismic testing capabilities", Earthq. Eng. Struct. D., 43, 1023-1043. https://doi.org/10.1002/eqe.2385.   DOI
30 Phillips, B.M. and Spencer, B.F. (2012a), "Model-based feedforward-feedback actuator control for real-time hybrid simulation", J. Struct. Eng., 139(7). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000606.   DOI
31 Plummer, A.R. (2006), "Model-in-the-loop testing", Institution of Mechanical Engineers, 220, 183-199. https://doi.org/10.1243/09596518JSCE207.
32 Abdelkader, A., Aly, A.M., Razaee, M., Bitsuamlak, G.T. and El Naggar, M.H. (2016), "On the evaluation of wind loads for wind turbines' foundation design: Experimental and numerical investigations", Struct. Des. Tall Spec. Build., 26(9). https://doi.org/10.1002/tal.1362.   DOI
33 Adhikari, S. and Bhattacharya, S. (2011), "Vibrations of windturbines considering soil-structure interaction", Wind Struct., 14(2), 85-112. https://doi.org/10.12989/was.2011.14.2.085.   DOI
34 Ahmadizadeh, M. and Mosqueda, G. (2007), "Combined implicit or explicit integration steps for hybrid simulation", Earthq. Eng. Struct. D., 36(15), 2325-2343. https://doi.org/10.1061/40944(249)1.   DOI
35 Amirinia, G. and Jung, S. (2017), "Along-wind buffeting responses of wind turbines subjected to hurricanes considering unsteady aerodynamics of the tower", Eng. Struct., 138, 337-350. https://doi.org/10.1016/j.engstruct.2017.02.023.   DOI
36 Spencer, Jr., B.F., Finholt, T.A., Foster, I., Kesselman, C., Beldica, C., Futrelle, J., Gullapalli, S., Hubbard, P., Liming, L., Marcusiu, D., Pearlman, L., Severance, C. and Yang, G. (2004), "NEESgrid: a distributed collaborator for advanced earthquake engineering experiment and simulation", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
37 Sim, H.B., I. Prowell, A. Elgamal, and C.M. Uang (2014), "Flexural tests and associated study of a full-scale 65-kW wind turbine tower", J. Struct. Eng., 140(5). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000924.   DOI
38 Smith, V. and Mahmoud, H. (2016), "Multihazard assessment of wind turbine towers under simultaneous application of wind, operation, and seismic loads", J. Perform. Constr. Fac., 30(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000898.   DOI
39 Song, B., Yi, Y. and Wu, J. (2013), "Study on seismic dynamic response of offshore wind turbine tower with monopile foundation based on M method", Adv. Mater. Res., 663, 686-691. https://doi.org/10.4028/www.scientific.net/AMR.663.686.   DOI
40 Stamatopoulos, G.N. (2013), "Response of a wind turbine subjected to near-fault excitation and comparison with the Greek Aseismic Code provisions", Soil Dynam. Earthq. Eng., 46, 77-84. https://doi.org/10.1016/j.soildyn.2012.12.014.   DOI
41 Stein, V.P. and Kaltenbach, H.J. (2016), "Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution", J. Physics: Conference Series, 753. https://doi.org/10.1088/1742-6596/753/3/032061.   DOI
42 McTavish, S., Feszty, D. and Nitzsche, F. (2013), "Evaluating Reynolds number effects in small-scale wind turbine experiments", J. Wind Eng. Ind. Aerod., 120, 81-90. https://doi.org/10.1016/j.jweia.2013.07.006.   DOI
43 Jennings, E., Ziaei, E., Pang, W., van der Lindt, J.W., Shao, X. and Bahmani, P. (2015), "Full-scale experimental investigation of second-story collapse behaviours in a woodframe building with an over-retrofitted first story", J. Perform. Constr. Fac., 30(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000736.   DOI
44 Asareh, M. and Volz, J.S. (2013), "Evaluation of Aerodynamic and Seismic Coupling for Wind Turbines Using Finite Element Approach", IMECE 2013, San Diego, USA, November.
45 Hashemi, M.J., Al-Ogaidi, Y., Al-Mahaidi, R., Kalfat, R., Tsang, H. and Wilson, J.L. (2017), "Application of hybrid simulation for collapse assessment of post-earthquake CFRP-repaired RC columns", J. Struct. Eng., 143(1). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001629.   DOI
46 International Electrotechnical Commission (2005), "IEC 61400-1 International Standard: Wind turbines 3rd ed", Geneva, Switzerland.
47 Imraan, M., Sharma, R.N. and Flay, R.G.J. (2013), "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension", Energy, 53, 22-32. https://doi.org/10.1080/j.energy.2013.03.008.   DOI
48 Ishihara, T., Yamaguchi, A., Takahara, K., Mekaru, T. and Matsuura, S. (2015), "An Analysis of Damaged Wind Turbines by Typhoon Maemi in 2003", Proceedings of the 6th Asia-Pacific Conference on Wind Engineering, Seoul, Korea, September.
49 Jonkman, J.M. (2009), "Dynamics of offshore floating wind turbines - model development and verification", Wind Energy, 12(5), 459-492. https://doi.org/10.1002/we.347.   DOI
50 Jonkman, J. (2018), "FAST", National Renewable Energy Laboratory, Washington D.C., USA. https://nwtc.nrel.gov/FAST.
51 Karimirad, M. and Bachynski, E.E. (2017), "Sensitivity analysis of limited actuation for real-time hybrid model testing of 5MW bottom-fixed offshore wind turbines", Energy Procedia, 137, 14-25. https://doi.org/10.1016/j.egypro.2017.10.331.   DOI
52 McCrum, D.P. and Broderick, B.M. (2013), "Evaluation of a substructured soft-real time hybrid test for performing seismic analysis of complex structural systems", Comput. Struct., 129, 111-119. https://doi.org/10.1016/j.compstruc.2013.02.009.   DOI
53 Katsanos, E., Thons, S. and Georgakis, C.T. (2016), "Wind turbines and seismic hazard: a state-of-the-art review", Wind Energy, 19(11), 2113-2133. https://doi.org/10.1002/we.1968.   DOI
54 Mao, Z., Dai, K., Zhao, Z., Wang, Y., Meng, J. and Zhao, C. (2018) "Shaking table test study on seismic responses of a wind turbine under ground motions with different spectral characteristics", Adv. Eng. Sci., 50(3), 125-133. https://doi.org/10.15961/j.jsuese.201800369. [In Chinese]
55 Mardfekri, M. and Gardoni, P. (2015), "Multi-hazard reliability assessment of offshore wind turbines", Wind Energy, 18(8), 1433-1450. https://doi.org/10.1002/we.1768.   DOI
56 McCrum, D. (2015), "Overview of Seismic Hybrid Testing", Proceedings of the SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World, Cambridge, U.K., July.
57 Bayati, I., Belloli, M., Bernini, L., Giberti, H. and Zasso, A. (2016), "Scale model technology for floating offshore wind turbines", IET Renewable Power Generation, 11(9), 1120-1126. https://doi.org/10.1049/iet-rpg.2016.0956.   DOI
58 Zhang, Z., Li, J. and Zhuge, P. (2014a), "Failure analysis of largescale wind power structure under simulated typhoon", Math. Problem. Eng., 2014. https://doi.org/10.1155/2014/486524.   DOI
59 Azcona, J., Bouchotrouch, F., Gonzalez, M., Garciandia, J., Munduate, X., Kelberlau, F. and Nygaard, T.A. (2014), "Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan", J. Physics: Conference Series, 524. https://doi.org/10.1088/1742-6596/524/1/012089.   DOI
60 Bachynski, E.E., Chabaud, V. and Sauder, T. (2015), "Real-time hybrid model testing of floating wind turbines: sensitivity to limited actuation", Energy Procedia, 80, 2-12. https://doi.org/10.1016/j.egypro.2015.11.400.   DOI
61 Berny-Brandt, E.A. and Ruiz, S.E. (2016), "Reliability over time of wind turbines towers subjected to fatigue", Wind Struct., 23(1), 75-90. https://doi.org/10.12989/was.2016.23.1.075.   DOI
62 Brodersen, M.L., Ou, G., Hogsberg, J. and Dyke, S. (2016), "Analysis of hybrid viscous damper by real time hybrid simulations", Eng. Struct., 126, 675-688. https://doi.org/10.1016/j.engstruct.2016.08.020.   DOI
63 Bukala, J., Damaziak, K., Karimi, H.R. and Malachowski, J. (2016), "Aero-elastic coupled numerical analysis of small wind turbine-generator modelling", Wind Struct., 23(6), 577-594. https://doi.org/10.12989/was.2016.23.6.577.   DOI
64 Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020.   DOI
65 Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2002), Wind Energy Handbook, John Wiley & Sons.
66 Calderer, A., Guo, X., Shen, L. and Sotiropoulos, F. (2014), "Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: a large eddy simulation approach", J. Physics: Conference Series, 524. https://doi.org/10.1088/1742-6596/524/1/012091.   DOI
67 Zhang, Z., Nielsen, S.R.K., Blaabjerg, F. and Zhao, D. (2014b), "Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque", Energies, 7. https://doi.org/10.3390/en7117746.   DOI
68 Zhang, Z., Nielsen, S.R.K., Basu, B. and Li, J. (2015), "Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbines blades from damping edgewise vibrations", J. Fluid. Struct., 59, 252-269. https://doi.org/10.1016/j.jfluidstructs.2015.09.006.   DOI
69 Zhang, Z., Staino, A., Basu, B. and Nielsen, S.R.K. (2016), "Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using realtime hybrid testing", Eng. Struct., 126, 417-431. https://doi.org/10.1016/j.engstruct.2016.07.008.   DOI
70 Zhao, Z., Dai, K., Camara, A., Bitsuamlak, G., and Sheng, C. (2019), "Wind turbine tower failure modes under seismic and wind loads", J. Perform. Constr. Fac., 33(2), 04019015. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001279.   DOI
71 Takanashi, K. et al. (1974), "Seismic failure analysis of structures by computer-pulsator on-line system", J. Institute of Industrial Science, 26(11), 13-25. [In Japanese]
72 Campagnolo, F., Petrovic, V., Bottasso, C.L. and Croce, A. (2016), "Wind Tunnel Testing of Wake Control Strategies", Proceedings of the 2016 American Control Conference, Boston, USA, July.
73 Takanashi, K. and Nakashima, M. (1987), "Japanese activities on on-line testing", J. Eng. Mech., 113(7), 1014-1032.   DOI
74 Tait, M.J., Isyumov, N. and El Damatty, A.A. (2008), "Performance of tuned liquid dampers", J. Eng. Mech., 134(5), 417-427. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(417).   DOI
75 Tang, Y. and Lou, M. (2017), "New unconditionally stable explicit integration algorithm for real-time hybrid testing", J. Eng. Mech., 143(7). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001235.   DOI
76 Chabaud, V. (2016), "Real-Time Hybrid Model Testing of Floating Wind Turbines", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
77 Chae, Y., Phillips, B., Ricles, J.M. and Spencer, Jr., B.F. (2013), "An Enhanced Hydraulic Actuator Control Method for Large-Scale Real-Time Hybrid Simulations", Proceedings of the Structures Congress 2013, Pittsburgh, USA, May.
78 Chen, C., Ricles, J.M., Marullo, T.M. and Mercan, O. (2009), "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm", Earthq. Eng. Struct. D., 38(1), 23-44. https://doi.org/10.1002/eqe.838.   DOI
79 Chen, X., Li, C. and Xu, J. (2015a), "Failure investigation on a coastal wind farm damaged by super typhoon: A forensic engineering study", J. Wind Eng. Ind. Aerod., 147, 132-142. https://doi.org/10.1016/j.jweia.2015.10.007.   DOI
80 Chen, J., Liu, Y. and Bai, X. (2015b), "Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD", Earthquake Engineering and Engineering Vibration, 14, 55-75. https://doi.org/10.1007/s11803-015-0006-5.   DOI
81 Ke, S.T., Xu, L. and Ge, Y.J. (2017), "The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position", Wind Struct., 25(6), 507-535. https://doi.org/10.12989/was.2017.25.6.507.   DOI
82 Chen, X. and Xu, J.Z. (2016), "Structural failure analysis of wind turbines impacted by super typhoon Usagi", Eng. Fail. Anal., 60, 391-404. https://doi.org/10.1016/j.engfailanal.2015.11.028.   DOI
83 Chou, J.S. and Tu, W.T. (2011), "Failure analysis and risk management of a collapsed large wind turbine tower", Eng. Fail. Anal., 18, 295-313. https://doi.org/10.1016/j.engfailanal.2010.09.008.   DOI
84 Dagnew, A.K. and Bitsuamlak, G.T. (2013), "Computational evaluation of wind loads on buildings: a review", Wind Struct., 16(6), 629-660. https://doi.org/10.12989/was.2013.16.6.629.   DOI
85 Kessentini, S., Choura, S., Najar, F. and Franchek, M.A. (2010), "Modeling and dynamics of a horizontal axis wind turbine", J. Vib. Control, 16(13), 2001-2021. https://doi.org/10.1177/1077546309350189.   DOI
86 Kimball, R., Goupee, A.J., Fowler, M.J., de Ridder, E.J. and Helder, J. (2014), "Wind/Wave Basin Verification of a Performance-Matched Scale-Model Wind Turbine on a Floating Offshore Wind Turbine Platform", OMAE 2014, San Francisco, USA, June.
87 Kolay, C., Ricles, J.M., Marullo, T.M., Mahvashmohammadi, A. and Sauce, R. (2015), "Implementation and application of the unconditionally stable explicit parametrically dissipative KR-$\alpha$ method for real-time hybrid simulation", Earthq. Eng. Struct. D., 44(5). https://doi.org/10.1002/eqe.2484.   DOI
88 Kolay, C. and Ricles, J.M. (2017), "Improved explicit integration algorithms for structural dynamic analysis with unconditional stability and controllable numerical dissipation", J. Earthq. Eng., 1-22. https://doi.org/10.1080/13632469.2017.1326423.
89 Lee, K.S. and Bang, H.J. (2012), "A study on the prediction of lateral buckling load for wind turbine tower structures", Int. J. Precision Eng. Manufact., 13(10). https://doi.org/10.1007/s12541-012-0240-y.   DOI
90 Koukina, E., Kanner, S. and Yeung, R.W. (2015), "Actuation of Wind-Loading Torque on Vertical Axis Turbines at Model Scale", OCEANS 2015, Genoa, Italy, May.
91 Li, X., Ozdagli, A.I., Dyke, S.J., Liu, X. and Christenson, R. (2017), "Development and verification of distributed real-time hybrid simulation methods", J. Comput. Civil Eng., 31(4). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000654.   DOI
92 Vilsen, S.A., Sauder, T., Sorensen, A.J. and Fore, M. (2019), "Method for real-time hybrid model testing of ocean structures: Case study on horizontal mooring systems", Ocean Eng., 172, 46-58. https://doi.org/10.1016/j.oceaneng.2018.10.042   DOI
93 Tran, T.T. and Kim, D. (2017), "A CFD study of coupled aerodynamic-hydrodynamic loads on a semisubmersible floating offshore wind turbine", Wind Energy, 21(1). https://doi.org/10.1002/we.2145.   DOI
94 Ueland, E.S., Skjetne, R. and Vilsen, S.A. (2018), "Force actuated real-time hybrid model testing of a moored vessel: A case study investigating force errors", IFAC-PapersOnLine, 51(29), 74-79. https://doi.org/10.1016/j.ifacol.2018.09.472.   DOI
95 Van der Woude, C. and Narasimhan, S. (2014), "A study on vibration isolation for wind turbine structures", Eng. Struct., 60, 223-234. https://doi.org/10.1016/j.engstruct.2013.12.028.   DOI
96 Wang, T., McCormick, J. and Nakashima, M. (2008), "Verification test of a hybrid test system with distributed column base tests", Proceedings of the 18th Analysis and Computation Specialty Conference, Vancouver, Canada, April.
97 Dai, K., Yichao, H., Changqing, G., Zhenhua, H. and Xiaosong, R. (2015a), "Rapid seismic analysis methodology for in-service wind turbine towers", Earthq. Eng. Eng. Vib., 14(3), 539-548. https://doi.org/10.1007/s11803-015-0043-0.   DOI
98 Wang, X., Gao, W., Gao, T., Li, Q., Wang, J. and Li, X. (2018), "Robust model reference adaptive control design for wind turbine speed regulation simulated by using FAST", J. Energy Eng., 144(2). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000520.   DOI
99 Wang, Z., Zhao, Y., Li, F. and Jiang, J. (2013), "Extreme dynamic responses of MW-level wind turbine tower in the strong typhoon considering wind-rain loads", Math. Problem. Eng., 2013. https://doi.org/10.1155/2013/512530.   DOI
100 Tian, J., Symans, M.D., Pang, W., Ziaei, E. and van de Lindt, J.W. (2015), "Application of energy dissipation devices for seismic protection of soft-story wood-frame buildings in accordance with FEMA guidelines", J. Struct. Eng., 142(4). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001269.   DOI
101 Dai, K., Bergot, A., Liang, C., Xiang, W.N. and Huang, Z. (2015b), "Environmental issues associated with wind energy - A review", Renew. Energ., 75, 911-921. https://doi.org/10.1016/j.renene.2014.10.074.   DOI
102 Dai, K., Wang, Y., Huang, Y., Zhu, W. and Xu, Y. (2017a), "Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers", Wind Energy, 20, 1687-1710. https://doi.org/10.1002/we.2117.   DOI
103 Dai, K., Sheng, C., Zhao, Z., Yi, Z., Camara, A. and Bitsuamlak, G. (2017b), "Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds", Wind Struct., 25(1), 79-100. https://doi.org/10.12989/was.2017.25.1.079.   DOI
104 Do, T.Q., van de Lindt, J.W. and Mahmoud, H. (2015b), "Fatigue life of wind turbine tower bases throughout Colorado", J. Perform. Constr. Fac., 29(4). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000612.   DOI
105 Dermitzakis, S.N. and Mahin, S.A. (1985), "Development of substructuring techniques for on-line computer controlled seismic performance testing", UCB/EERC-85/04, University of California.
106 Diaz, O. and Suarez, L.E. (2014), "Seismic analysis of wind turbines", Earthq. Spectra, 30(2), 743-765. https://doi.org/10.1193/123011EQS316M.   DOI
107 Do, T.Q., van de Lindt, J.W. and Mahmoud, H. (2015a), "Fatigue life fragilities and performance-based design of wind turbine tower base connections", J. Struct. Eng., 141(7). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001150.   DOI
108 Drazin, P.L., Govindjee, S. and Mosalam, K.M. (2015), "Hybrid simulation theory for continuous beams", J. Eng. Mech., 141(7).
109 Lim, C.N., Neild, S.A., Stoten, D.P., Drury, D. and Taylor, C.A. (2007), "Adaptive control strategy for dynamic substructuring tests", J. Eng. Mech., 133(8), 864-873. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(864).   DOI
110 Liu, S. and Janajreh, I. (2012), "Development and application of an improved blade element momentum method model on horizontal axis wind turbines", Int. J. Energy Environ. Eng., 3(30). https://doi.org/10.1186/2251-6832-3-30.
111 Luhur, M.R., Manganhar, A.L., Solangi, K.H., Jakhrani, A.Q., Mukwana, K.C. and Samo, S.R. (2016), "A review of the stateof-the-art in aerodynamic performance of horizontal axis wind turbine", Wind Struct., 22(1), 1-16. https://doi.org/10.12989/was.2016.22.1.001.   DOI
112 Ma, H., Zhang, D. and Ma, Q. (2015), "Scale model experimental of a prestressed concrete wind turbine tower", Wind Struct., 21(3), 353-367. https://doi.org/10.12989/was.2015.21.3.353.   DOI
113 Maheri, A., Noroozi, S., Toomer, C. and Vinney, J. (2006), "Damping the fluctuating behaviour and improving the convergence rate of the axial induction factor in the BEMTbased rotor aerodynamic codes", European Wind Energy Conference, Athens, Greece, February.
114 Macquart, T., Maheri, A. and Busawon, K. (2012), "Improvement of the accuracy of the blade element momentum theory method in wind turbine aerodynamics analysis", Proceedings of the 2nd International Symposium on Environment-Friendly Energies and Applications, Newcastle, UK, June.
115 Madsen, H.A., Mikkelsen, R., Oye, S., Bak, C. and Johansen, J. (2007), "A detailed investigation of the Blade Element Momentum (BEM) model based on analytical and numerical results and proposal for modifications of the BEM model", J. Physics: Conference Series, 75. https://doi.org/10.1088/1742-6596/75/1/012016.   DOI