• Title/Summary/Keyword: Wind park Wind farm

Search Result 99, Processing Time 0.024 seconds

Analysis on Induction Heating of Ring Flange for Wind Power (풍력발전용 링플랜지의 유도가열 해석)

  • Yun, D.W.;Park, H.C.;Lee, I.C.;Kim, S.Y.;Park, N.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.63-69
    • /
    • 2012
  • This paper presents an analysis on the induction heating of ring flange for wind farm. Ring flange is used for the connection of poles when building a column of wind power plant. Heat treatment of ring flange with the diameter of ${\O}1,000mm$ has been considered. For analysis on the induction heating, FEA is used. Firstly, electromagnetic filed analysis was performed to get the induction current distribution on the steel, After that, heat transfer analysis was performed using the magnetic filed analysis results. for more precise analysis, some measurement for permeability has been performed and the measurement data was used during the analysis. From the analysis, we get the temperature distribution on the ring flange.

Ecological Evaluation on the Biomass of Macrobenthic Communities Observed from a Planned Offshore Wind Farm Area, West Coast of Korea (서해 해상풍력단지 조성 예정해역의 대형저서동물 군집 생체량에 대한 생태학적 평가)

  • Jeong, Su-Young;Lee, Chae-Lin;Gim, Seong-Hyun;Kim, Sungtae;Myoung, Jung-Goo;Oh, Sung-Yong;Park, Jin Woo;Jin, Sung-Joo;Yoo, Jae-Won
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.311-318
    • /
    • 2019
  • We analyzed the preliminary survey data (2014-2016) of macrobenthic community biomass (n = 112) from the wind farm area located in the southern part of the west coast of Korea and compared this data with data from the entire west coast (n = 369; 2006-2008). Modal classes from frequency distributions were 6 times higher in the latter (5 vs. 32 g/㎡). The mean and median values of the latter were 1.3 and 1.7 times higher (mean, 20.7 vs. 27.8 g/㎡; median, 17.1 vs. 29.5 g/㎡), and the maximum value was 3.4 times higher. Mood's median test showed significant difference at p-value = 0.01. We estimated the biomass-to-depth relationships from each data set by using Akaike Information Criterion and regarded the non-overlap of the 95% confidence intervals as indicating significant difference. The biomass was different from a 10 m depth below, and 3 times higher in the west coast at around 20 m compared with the maximum depth of the wind farm area. A local event of catastrophic sedimentation ranging from 1 to 2 m was observed in the wind farm during winter surveys. This could be a probable source of the lower biomass, but information on biomass seasonality and a natural experimental approach seem to be needed for the conduct of further studies. This study is meaningful in that it provided the background to assess future changes by understanding the lower level of benthic productivity in the area. We expect this study will contribute to the preparation of measures that can remove or mitigate the source of the lower biomass and improve the productivity of fishery resources in the area.

Evaluation of Power Performance by Anemometer on WTGS (풍력발전기 너셀에 장착된 풍속계를 이용한 출력성능 평가)

  • Kim, Soo-Sang;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.303-310
    • /
    • 2012
  • We carried out the power performance evaluation for 1.5 MW${\times}$2 by using anemometer installed on WTGS(Wind Turbine Generator System) in the wind farm at Shi-hwa bang-a-mu-ri. In this paper, we compared and analyzed the performance of guaranteed output and measured output of WTGS which includes output curve, output coefficient, AEP(Annual Energy Product) and availability, etc.. The power performance of WTGS was optimized in the low wind speed sections(3 m/s ~ 10 m/s) and the measured output was more produced by AEP 109 % and availability 112 % than the guaranteed output. In addition, we could also cut the high cost of testing WTGS performance by using anemometer as a substitute for weather mast.

Dynamic Reserve Estimating Method with Consideration of Uncertainties in Supply and Demand (수요와 공급의 불확실성을 고려한 시간대별 순동예비력 산정 방안)

  • Kwon, Kyung-Bin;Park, Hyeon-Gon;Lyu, Jae-Kun;Kim, Yu-Chang;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1495-1504
    • /
    • 2013
  • Renewable energy integration and increased system complexities make system operator maintain supply and demand balance harder than before. To keep the grid frequency in a stable range, an appropriate spinning reserve margin should be procured with consideration of ever-changing system situation, such as demand, wind power output and generator failure. This paper propose a novel concept of dynamic reserve, which arrange different spinning reserve margin depending on time. To investigate the effectiveness of the proposed dynamic reserve, we developed a new short-term reliability criterion that estimates the probability of a spinning reserve shortage events, thus indicating grid frequency stability. Uncertainties of demand forecast error, wind generation forecast error and generator failure have been modeled in probabilistic terms, and the proposed spinning reserve has been applied to generation scheduling. This approach has been tested on the modified IEEE 118-bus system with a wind farm. The results show that the required spinning reserve margin changes depending on the system situation of demand, wind generation and generator failure. Moreover the proposed approach could be utilized even in case of system configuration change, such as wind generation extension.

A Study on Design of Offshore Meteorological Tower (해상기상탑 설계에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Jeong, Moon-Seon;Joo, Hyo-Joon;Kwon, O-Soon;Kwag, Dae-Jin;Jeong, Gwon-Seong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • A meteorological(met) tower is the first structure installed during the planning stages of offshore wind farm. The purpose of this paper is to design the met tower with tripod bucket type support structure and to install the sensors. The support structure consist of a central steel shaft connected to three cylindrical steel suction buckets which is more cheaper than monopile or jacket type. And the remote wind condition sensors and marine monitoring equipment, including adcp, pressure type tide gauge, wave height sensors, and scour sensors, remote power supply are installed. The manufactured met tower constructed on sea area which is in front of Gasa island. All of functions of met tower showed normal operation conditions and the wind data got by remote data collection system successfully.

Analysis of Asian Dust Transportation Time and Wind Farm in Baengnyeongdo Island and the Metropolitan Area (백령도와 수도권의 황사 수송 시간과 바람장 분석)

  • Jo, Won Gi;Kang, Dong-hwan;Park, Gyeong-Deok;Yang, Minjune
    • Journal of Environmental Science International
    • /
    • v.31 no.6
    • /
    • pp.525-533
    • /
    • 2022
  • Baengnyeongdo, located within the Asian dust stream, is an ideal place to analyze Asian dust moving into the West Sea due to its low emission of artificial pollutants. Baengnyeongdo is being used to analyze the vertical distribution of dust from the lower atmosphere to the upper layer through remote observation. This study compared the ground concentration of dust between Baengnyeongdo and the metropolitan area, estimated the lag time of transport of Asian dust from Baengnyeongdo to the metropolitan area, and examined the homogeneity of upper winds using the rawinsonde method. The results showed that the cross correlation coefficient was higher and the lag time was shorter for each observation station when the distance from Baengnyeongdo was shorter. The upper wind at Baengnyeongdo is dominated by the west/northwest wind. It is the basis for the correlation of dust concentration between Baengnyeongdo and the metropolitan area located to the east. In the future, upper wind data and Asian dust concentration data over the West Sea and Baengnyeongdo are expected to contribute to research related to the movement and prediction of Asian dust and preparation for Asian dust in the metropolitan area.

Research on Optimized Operating Systems for Implementing High-Efficiency Small Wind Power Plants (고효율 소형 풍력 발전소 구현을 위한 최적화 운영 체계 연구)

  • Young-Bu Kim;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.94-99
    • /
    • 2024
  • Recently, wind power has been gaining attention as a highly efficient renewable energy source, leading to various technological developments worldwide. Typically, wind power is operated in the form of large wind farms with many wind turbines installed in areas rich in wind resources. However, in developing countries or regions isolated from the power grid, off-grid small wind power systems are emerging as an efficient solution. To efficiently operate and expand off-grid small-scale power systems, the development of real-time monitoring systems is required. For the efficient operation of small wind power systems, it is essential to develop real-time monitoring systems that can actively respond to excessive wind speeds and various environmental factors, as well as ensure the stable supply of produced power to small areas or facilities through an Energy Storage System (ESS). The implemented system monitors turbine RPM, power generation, brake operation, and more to create an optimal operating environment. The developed small wind power system can be utilized in remote road lighting, marine leisure facilities, mobile communication base stations, and other applications, contributing to the development of the RE100 industry ecosystem.

Numerical Analysis of Offshore Wind Turbine Foundation Considering Properties of Soft layer in Jeju (제주 연약지층 특성을 고려한 해상풍력기초의 수치해석적 연구)

  • Yang, Ki-Ho;Seo, Sang-Duk;Cho, Yee-Sun;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.45-56
    • /
    • 2013
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. In this paper, the settlement and stress distribution is predicted by numerical analysis when the mono-pile base are constructed on various soft layer between stratified structure. To determine the settlement of the pile foundation supported on stratified rock layer, the geological investigation at the 3 regiions and the results of laboratory experiments of the stratified rock layer is required.

Compensation of Unbalanced PCC Voltage in an Off-shore Wind Farm of PMSG Type Turbines (해상풍력단지에서의 PMSG 풍력발전기를 활용한 계통연계점 불평형 전원 보상)

  • Kang, Ja-Yoon;Han, Dae-Su;Suh, Yong-Sug;Jung, Byoung-Chang;Kim, Jeong-Joong;Park, Jong-Hyung;Choi, Young-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This paper proposes a control algorithm for permanent magnet synchronous generators with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage off-shore wind power system under unbalanced grid conditions. Specifically, the proposed control algorithm compensates for unbalanced grid voltage at the PCC (Point of Common Coupling) in a collector bus of an off-shore wind power system. This control algorithm has been formulated based on symmetrical components in positive and negative synchronous rotating reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power is described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of AC input current is injected into the PCC in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm enables the provision of balanced voltage at the PCC resulting in the high quality generated power from off-shore wind power systems under unbalanced network conditions.

Development of Foundation Structure for 8MW Offshore Wind Turbine on Soft Clay Layer (점토층 지반에 설치 가능한 8MW급 해상풍력발전기 하부구조물 개발)

  • Seo, Kwang-Cheol;Choi, Ju-Seok;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.394-401
    • /
    • 2021
  • The construction of new renewable energy facilities is steadily increasing every year. In particular, the offshore wind farm market, which has abundant development scalability and a high production coefficient, is growing rapidly. The southwest sea has the highest possible offshore wind power potential, and related projects are to be promoted. This study presents a basic design procedure by the EUROCODE and considers structural safety in the development of an effective of shore wind foundation in the clay layer. In a previous study, the wind power generator of 5MW class was the main target, but the 8MW of wind turbine generator, which meets the technical trend of the wind turbine market in the Southwest sea, was selected as the standard model. Furthermore, a foundation that fulfills the geological conditions of the Southwest sea was developed. The structural safety of this foundation was verified using finite element method. Moreover, structural safety was secured by proper reinforcement from the initial design. Based on the results of this study, structural safety check for various types of foundations is possible in the future. Additionally, specialized structural design and evaluation guidance were also established.