• Title/Summary/Keyword: Wind load condition

Search Result 187, Processing Time 0.029 seconds

Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System (평지붕 설치 태양광시스템의 표면형태 조사·분석)

  • Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

Assessment of Extreme Wind Risk for Window Systems in Apartment Buildings Based on Probabilistic Model (확률 모형 기반의 아파트 창호 시스템 강풍 위험도 평가)

  • Ham, Hee Jung;Yun, Woo-Seok;Choi, Seung Hun;Lee, Sungsu;Kim, Ho-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.625-633
    • /
    • 2015
  • In this study, a coupled probabilistic framework is developed to assess wind risk on apartment buildings by using the convolution of wind hazard and fragility functions. In this framework, typhoon induced extreme wind is estimated by applying the developed Monte Carlo simulation model to the climatological data of typhoons affecting Korean peninsular from 1951 to 2013. The Monte Carlo simulation technique is also used to assess wind fragility function for 4 different damage states by comparing the probability distributions of the window system's resistance performance and wind load. Wind hazard and fragility functions are modeled by the Weibull and lognormal probability distributions based on simulated wind speeds and failure probabilities. The modeled functions are convoluted to obtain the wind risk for the different damage levels. The developed probabilistic framework clearly shows that wind risk are influenced by various important characteristics of terrain and apartment building such as location of building, exposure category, topographic condition, roof angle, height of building, etc. The risk model presented in this paper can be used as tools to predict economic loss estimation and to establish wind risk mitigation plan for the existing building inventory.

Analysis on the Effects by Weather Conditions of Infrared Thermography (기상조건이 적외선 열화상에 미치는 영향 분석)

  • Lim, Young-Bae;Choi, Myeong-Il;Kim, Gi-Hyun;Park, Chee-Hyun;Bae, Seok-Myung;Cho, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.142-147
    • /
    • 2007
  • Infrared thermography is one of the most valuable and cost-effective diagnostic techniques for predictive maintenance on electrical systems. For the electric installations, the thermographies can identify major problems, which if left unattended could lead to breakdowns. The result thermal images depend upon operator skills, inspection technique, and load and weather conditions. When the thermographer is applied to remote monitoring, the conditions of the systems are not perfectly analyzed because operators are hard to know the weather's effects of the installed place. Therefore, this paper defines the effects by weather conditions which will influence the final results. The purpose of this paper is to define the weather effects that a thermographer needs to consider for successful condition analysis.

Operation load estimation of chain-like structures using fiber optic strain sensors

  • Derkevorkian, Armen;Pena, Francisco;Masri, Sami F.;Richards, W. Lance
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.385-396
    • /
    • 2017
  • The recent advancements in sensing technologies allow us to record measurements from target structures at multiple locations and with relatively high spatial resolution. Such measurements can be used to develop data-driven methodologies for condition assessment, control, and health monitoring of target structures. One of the state-of-the-art technologies, Fiber Optic Strain Sensors (FOSS), is developed at NASA Armstrong Flight Research Center, and is based on Fiber Bragg Grating (FBG) sensors. These strain sensors are accurate, lightweight, and can provide almost continuous strain-field measurements along the length of the fiber. The strain measurements can then be used for real-time shape-sensing and operational load-estimation of complex structural systems. While several works have demonstrated the successful implementation of FOSS on large-scale real-life aerospace structures (i.e., airplane wings), there is paucity of studies in the literature that have investigated the potential of extending the application of FOSS into civil structures (e.g., tall buildings, bridges, etc.). This work assesses the feasibility of using FOSS to predict operational loads (e.g., wind loads) on chain-like structures. A thorough investigation is performed using analytical, computational, and experimental models of a 4-story steel building test specimen, developed at the University of Southern California. This study provides guidelines on the implementation of the FOSS technology on building-like structures, addresses the associated technical challenges, and suggests potential modifications to a load-estimation algorithm, to achieve a robust methodology for predicting operational loads using strain-field measurements.

Rotation Point of Laterally Loaded Pile Under Multi Layered Soil (다층지반 하에서 수평하중을 받는 말뚝의 회전점)

  • Kang, Beong-Joon;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.708-712
    • /
    • 2008
  • Piles and pile foundations have been in common use since very early times. Usually function of piles is to carry load to a depth at which adequate support is available. Another important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the wind load, lateral action of earthquake, and so on. After Broms (1964), many researchers have been suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient and it gives confusion to pile designers. Lateral earth pressure, essential in lateral capacity estimation, influenced by pile's behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare to the estimation value by previous research. To model the pile set up in the sand, we use the chamber and small scale steel pile, and rain drop method. Test results show the rotation point is formed where the Prasad and Chari's estimation value, and they also show multi layered condition affects to location of rotation point to be scattered.

  • PDF

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land (새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석)

  • Hyo-Jae Seo;Il-Hwan Seo;Deuk-ha Noh;Haksung Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

A study on the Architectural Condition and Cases of BIPV-module for Roof (지붕일체형 PV모듈의 건축특성 및 적용사례 분석연구)

  • Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.6 no.3
    • /
    • pp.49-56
    • /
    • 2006
  • The roof among the outer surfaces of buildings is an optimum place to install PV since it is the best favorable part in the building to be exposed to day light. Especially, in case of module of BIPV for Roof, it should have essentially the functions of both electricity generation and roof-finish as a construction material. The followings are the results of the study which has analyzed the architectural conditions and applications thereof at the job site. -The aesthetic function of BIPV module is very important because the roof, mostly located at the top of the buildings, is easily recognized and affects outer interior design of the building a lot. -The heat proof of BIPV for Roof could affect the energy consumption through the roof having a wide area. -For architectural condition to the weather, the roof has to ensure the stability of the weather, humidity proof, and airtightness to the wind respectively. -For architectural condition of the structure, endurance by physical power such as stability of both combining and fixing and transfer of load should be ensured. -For residents protection, it has also architectural functions to secure for the space and shield ozone, UV and noxious substances. -Through its practical applications, It is already confirmed that there are various types of BIPV modules overseas and its application has been proved successfully.

A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair (헬리컬 기어의 치형최적화에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.

Designation of the Boundary Conditions for Estimating the Thrust Loss due to Thruster-Hull Interactions

  • Gi Su Song;Seung Jae Lee;Ju Sung Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.353-363
    • /
    • 2022
  • The azimuth thruster is mainly installed on a vessel that requires a dynamic positioning (DP) function for special purposes. When the azimuth thruster on a vessel operates for DP, the thrust loss is induced by the thruster-hull interaction. This study examined the influence of boundary conditions in numerical simulations for predicting thrust loss. Wind turbine installation vessels (WTIV) and floating production storage and offloading (FPSO) were chosen as a target vessels. In this study, two types of boundaries were defined. The first consideration is that the boundary condition was assigned with consideration of the azimuth angle of the thruster, whereas it is fixed regardless azimuth angle of the thruster. The predicted thrust loss according to these boundary conditions showed a difference. This observation originated from the current load of the vessel. Therefore, the boundary conditions for which the current load is not induced need to be designated to obtain a realistic thrust loss in a numerical simulation.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.