• Title/Summary/Keyword: Wind direction and velocity

Search Result 252, Processing Time 0.03 seconds

Infrasound Wave Propagation Characteristics in Korea (국내 인프라사운드 전파특성 연구)

  • 제일영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.63-69
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) cooperating with Southern Methodist University(SMU) has been operating seismo-acoustic array in Chul-Won area to discriminate man-made explosions from natural earthquakes since at the end of July 1999. In order to characterize propagation parameters of detected seismo-acoustic signal and to associate these signals as a blast event accompanying seismic and acoustic signals simultaneously it is necessary to understand infrasound wave propagation in the atmosphere. Two comparable Effective Sound Velocity Structures(ESVS) in atmosphere were constructed by using empirical model (MSISE90 and HWM93) and by aerological observation data of Korea Meteorological Administration (KMA) at O-San area. Infrasound propagation path computed by empirical model resulted in rare arival of refracted waves on ground less than 200km from source region. On the other hand Propagation paths by KMA more realistic data had various arrivals at near source region and well agreement with analyzed seismo-acoustic signals from Chul-Won data. And infrasound propagation in specific direction was very influenced by horizontal wind component in that direction. Linear travel time curve drawn up by 9 days data of the KMA in autumn season showed 335.6m/s apparent sound velocity in near source region. The propagation characteristics will be used to associate seismo-acoustic signals and to calculate propagation parameters of infrasound wave front.

  • PDF

A Study on Aircraft Ground Speed Calculation Method Using Aircrat's Environmental Parameters(True Air speed, Tracking Angle, Climb Rate, Wind velocity, Wind direction) (항공기의 환경 파라미터(속도정보, 상승률, 기상정보)를 이용한 이동 속도 연산 기법에 관한 연구)

  • Kim, Yong-Kyun;Han, Jong Wook
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.936-938
    • /
    • 2013
  • 늘어나는 항공 수요의 증가로 인하여 항공 트래픽은 날로 증가하고 있으며, 이에 따라 항공기의 사고 가능성이 점차 늘어나고 있다. 항공기를 안전하게 관제하기 위하여는 항공기의 향후 이동 경로와 그때의 고도와 속도, 예상 도착 시간을 사전에 연산하는 궤도 모델링 기법이 필수적으로 요구되고 있다. 이에 본 논문에서는 궤도 모델링에 필수적으로 사용되는 항공기의 이동 속도와 그때의 고도 계산 알고리즘을 제안하고 환경 파라미터의 변화에 따라 이동 속도가 변경됨을 확인하였다.

Effect on measurements of anemometers due to a passing high-speed train

  • Zhang, Jie;Gao, Guangjun;Huang, Sha;Liu, Tanghong
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.549-564
    • /
    • 2015
  • The three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations and k-${\varepsilon}$ double equations turbulent model were used to investigate the effect on the measurements of anemometers due to a passing high-speed train. Sliding mesh technology in Fluent was utilized to treat the moving boundary problem. The high-speed train considered in this paper was with bogies and inter-carriage gaps. Combined with the results of the wind tunnel test in a published paper, the accuracy of the present numerical method was validated to be used for further study. In addition, the difference of slipstream between three-car and eight-car grouping models was analyzed, and a series of numerical simulations were carried out to study the influences of the anemometer heights, the train speeds, the crosswind speeds and the directions of the induced slipstream on the measurements of the anemometers. The results show that the influence factors of the train-induced slipstream are the passing head car and tail car. Using the three-car grouping model to analyze the train-induced flow is reasonable. The maxima of horizontal slipstream velocity tend to reduce as the height of the anemometer increases. With the train speed increasing, the relationship between $V_{train}$ and $V_{induced\;slipstream}$ can be expressed with linear increment. In the absence of natural wind conditions, from the head car arriving to the tail car leaving, the induced wind direction changes about $330^{\circ}$, while under the crosswind condition the wind direction fluctuates around $-90^{\circ}$. With the crosswind speed increasing, the peaks of $V_X,{\mid}V_{XY}-V_{wind}{\mid}$ of the head car and that of $V_X$ of the tail car tend to enlarge. Thus, when anemometers are installed along high-speed railways, it is important to study the effect on the measurements of anemometers due to the train-induced slipstream.

Development of a Laboratory-based Calibration System for 5-Hole Probes (5공 프로브 실험실용 교정 시스템 개발)

  • Kim, Changmin;Baek, Seungchan;Ji, Changeun;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.122-128
    • /
    • 2020
  • In the field of experimental fluid dynamics, the 5-hole probe is one of the most widely used tools to measure flow velocity and pressure. We hereby describe the development of an inexpensive laboratory-based flow calibration system for 5-hole probes. The system is applied to a custom L-shaped probe, and the probe performance is compared against a standard commercial probe in a custom wind tunnel. The setup allows rotation of the probe around the yaw and pitch axes. Static and total pressure values are calculated, and then calibration maps are constructed based on the yaw and pitch angles. Using these maps, errors of the custom probe are found to be ±5% for velocity magnitude and ±3° for direction, compared to the commercial probe, when both pitch and yaw angles are within 40°.

Estimation of Wind Resistance Capacity of Nielsen Arch Bridge Based on Measured Data From Monitoring System (모니터링 시스템의 계측자료를 기반으로 한 닐슨아치 교량의 내풍 안정성 평가)

  • Lee, Deok Keun;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.56-64
    • /
    • 2013
  • The wind resistant capacity of bridges with a span of less than 200m is typically evaluated by Wind Resistant Design Manual for Highway Bridges in Japan. Also, the first vertical frequency plays an important role in the evaluation of their aerodynamic performance. An unexpected vortex-induced vibration of Nielsen arch bridge with span of 183m designed by this manual has been measured by monitoring system during typhoon. The amplitude of vibrations was about 2 times than the allowable vibration displacement. This paper presents the feature of vortex-induced vibration of this Nielsen arch bridge based on measured wind velocity, wind direction, and responses at midspan of main girder. From the result of FFT, the $1^{st}$ mode shape of the bridge is antisymmetric and the $2^{nd}$ is symmetric. Also, the dominant vibration of the bridge is the $2^{nd}$ vertical mode. According to these results, the $2^{nd}$ vertical vibration mode of this Nielsen arch bridge is prior to the first for the estimation of wind resistance capacity.

Numerical simulation for unsteady flow over marine current turbine rotors

  • Hassanzadeh, A. Reza;Yaakob, Omar bin;Ahmed, Yasser M.;Ismail, M. Arif
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • The numerous benefits of Savonius turbine such as simple in structure, has appropriate self-start ability, relatively low operating velocity, water acceptance from any direction and low environmental impact have generated interests among researchers. However, it suffers from a lower efficiency compared to other types of water turbine. To improve its performance, parameters such flow pattern, pressure and velocity in different conditions must be analyzed. For this purpose, a detailed description on the flow field of various types of Savonius rotors is required. This article presents a numerical study on a nonlinear two-dimensional flow over a classic Savonius type rotor and a Benesh type rotor. In this experiment, sliding mesh was used for solving the motion of the bucket. The unsteady Reynolds averaged Navier-Stokes equations were solved for velocity and pressure coupling by using the SIMPLE (Semi-Implicit Method for Pressure linked Equations) algorithm. Other than that, the turbulence model using $k-{\varepsilon}$ standard obtained good results. This simulation demonstrated the method of the flow field characteristics, the behavior of velocity vectors and pressure distribution contours in and around the areas of the bucket.

An Experimental Study on Loss Coefficient of Turbine Cascade with Incidence Angles (입사각의 변화에 따른 터빈 캐스케이드에서 손실계수에 관한 실험적 연구)

  • Lee, Ju-Hyung;Hur, Won-Hae;Jeon, Chang-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.48-56
    • /
    • 1999
  • For the study on loss coefficients of turbine cascade with variation of incidence angle, the wind-tunnel tests were performed under the ranges in velocity of 10 m/s, 15 m/s, 20 m/s and incidence angles from $-20^{\circ}\;to\;20^{\circ}$ by intervals of $5^{\circ}$. Comparing our results with Soderberg's prediction, differences in loss coefficient were $2.5\%\;and\;2.8\%$ each for 10 m/s and 15 m/s. A large disagreement of $30.3\%$ was showed at 20 m/s freestream velocity. The comparisons of these test results with Ainley's prediction showed an $8\%$ difference in the case of 20 m/s freestream velocity. Test results were approximately comparable with Ainley's loss prediction's in incidence angles. Generally, averaged total pressure loss seemed to be decreased as Reynolds number increased. The total pressure loss coefficients were increased parabolically, as incidence angles were increased negatively and positively from $0^{\circ}$, in all speed ranges. At the far low freestream velocities, minimum loss accurred between $-5^{\circ}\;and\;+5^{\circ}$. But this minimum range narrowed the location of this range by shifting to the direction of the angle as freestream velocity was increased.

  • PDF

Analysis of Wind Environment at Waterfront in Busan - About Haeundae, Suyoungman and Gwanganli - (부산해안지역 워터프런트의 풍환경 분석 연구 -해운대, 수영만, 광안리 대상으로-)

  • Doe, Geun-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.369-374
    • /
    • 2009
  • Recently, the number of design for open-spaces at waterfront, such as open-air restaurant and cafeteria, has been increasing to provide openness and natural environment of waterfront. However, when planning open-air restaurant and cafeteria, it is essential to investigate the climate characteristic of waterfront, especially wind environment, since the waterfront has a special quality of climate like low-temperature and strong wind which differs from downtown or inland In this study, wind environments of Haeundae, Suyoungrnan, and Gwanganli, the famous waterfronts in Busan, were investigated for design of open-air restaurants and open cafeterias. The main results were as follows. 1) the waterfront area of Haeundae, Suyoungman, and Gwanganli is suitable for open-air restaurant and open cafeterias; and 2) the appropriate period for open space in this area is from the end of March to November.

An Experimental Study for Efficient Design Parameters of a Wind Power Tower (풍력타워의 효율적인 설계변수에 대한 실험적 연구)

  • Cho, Soo-Yong;Choi, Sang-Kyu;Kim, Jin-Gyun;Cho, Chong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.114-123
    • /
    • 2018
  • Wind power tower (WPT) has been used to augment the performance of vertical axis wind turbine (VAWT). However, the performance of the WPT depends on several design parameters, such as inner and outer radius, or number of guide walls. Therefore, an experimental study was conducted to investigate efficient design parameters on the WPT. A wind tunnel was utilized and its test section dimension was 2m height and 2.2m width. One story model of the WPT was manufactured with seven guide walls and a VAWT was installed within the WPT. Three different sizes of guide walls were applied to test with various design parameters. The power coefficients were measured along the azimuthal direction in a state of equal inlet velocity in order to compare its performance relatively. The experimental results showed that the gap between the inner radius of the WPT and the rotating radius of the VAWT was a major parameter to improve the performance of VAWT within the WPT.

Coherent Structures beneath Wind-Generated Deepwater Waves (심해 풍파 아래에서의 응집 구조)

  • Oh, Sang-Ho;Suh, Kyung-Duck;Mizutani, Natsuki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.16-28
    • /
    • 2007
  • The results of experimental investigation of coherent structures beneath wind-generated waves in deep water are presented. Vorticity fields of deepwater wind waves were visualized by analyzing the velocity fields obtained by PIV measurements under different wind and fetch conditions. In addition, spatio-temporal evolution of the coherent structures and subsequent changes in vertical profiles of the instantaneous vorticity were qualitatively examined. It was found that a coherent structure is formed right underneath the wave crest and traveled in phase with the surface wave. The direction of rotation of the coherent structure was contrary to the wave orbital motion when wind speed is less than 10 m/s, while was same as the wave orbital motion when wind speed is approximately 13 m/s and wave breaking occurs at the wave crest. In the near-surface region, complex vortex-vortex interactions were observed according to the traveling of the coherent structure. In contrast, coherent structures far below the water surface changed little due to weak influence of orbital motion by the surface waves.