• 제목/요약/키워드: Wind blades

검색결과 318건 처리시간 0.021초

풍력 발전기의 Rotor-Blades 회전체 시스템 공력 해석 (Analysis of Flows around the Rotor-Blades as Rotating Body System of Wind Turbine)

  • 김동진;곽승현;이경호
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.25-31
    • /
    • 2009
  • The most important component of wind turbine is rotor blades. The developing method of wind turbine was focused on design of rotor blade. By the way, the design of a rotating body is more decisive process in order to adjust the performance of wind turbine. For instance, the design allows the designer to specify the wind characteristics derived by topographical map. The iterative solver is then used to adjust one of the selected inputs so that the desired rotating performance which is directly related to power generating capacity and efficiency is achieved. Furthermore, in order to save the money for manufacturing the rotor blades and to decrease the maintenance fee of wind power generation plant, while decelerating the cut-in speed of rotor. Therefore, the design and manufacturing of rotating body is understood as a substantial technology of wind power generation plant development. The aiming of this study is building-up the profitable approach to designing of rotating body as a system for the wind power generation plant. The process was conducted in two steps. Firstly, general designing and it’s serial testing of rotating body for voltage measurement. Secondly, the serial test results above were examined with the CFD code. Then, the analysis is made on the basis of amount of electricity generated by rotor-blades and of cut-in speed of generator.

윈드 쉬어에 의한 2MW급 육상용 풍력터빈의 추력 특성 확인 (An Investigation on Thrust Properties under Wind Shear for an On-Shore 2 MW Wind Turbine)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.14-18
    • /
    • 2016
  • Multi-MW wind turbines have very large blades over 40~50 m in length. Some factors like wind shear and tower shadow make an effect on asymmetric loads on the blades. Larger asymmetric loads are produced as the length of blade is getting longer. In this paper, a 2 MW on-shore wind turbine is considered and variations of thrust on 3 blades and rotor hub under wind shear are calculated by using a commercial Bladed S/W and dynamic properties of the thrust variations are investigated. It is shown that the amplitude of the asymmetric thrust on each blade under wind shear is getting larger as the wind speed increases, the frequency of the thrust variation on each blade is same as the one of rotor speed, and the frequency of the thrust variation at rotor hub is 3 times as high as the one of rotor speed.

풍력발전기 톱니형 뒷전 블레이드 소음 예측 기법 (Prediction Method for Trailing-edge Serrated Wind Turbine Noise)

  • 한동연;최지훈;이수갑
    • 신재생에너지
    • /
    • 제16권2호
    • /
    • pp.1-13
    • /
    • 2020
  • The reduction of noise from wind turbines has been studied using various methods. Some examples include controlling wind turbine blades, designing low-noise-emitting wind turbine blades, and using trailing-edge serrations. Among these methods, serration is considered an effective noise reduction method. Various studies have aimed to understand the effects of trailing-edge serration parameters. Most studies, however, have focused on fixed-wing concepts, and few have analyzed noise reduction or developed a prediction method for rotor-type blades. Herein, a noise prediction method, composed of two noise prediction methods for a wind turbine with trailing-edge serrations, is proposed. From the flow information obtained by an in-house program (WINFAS), the noise from non-serrated blades is calculated by turbulent ingestion noise and airfoil self-noise prediction methods. The degree of noise reduction caused by the trailing-edge serrations is predicted in the frequency domain by Lyu's method. The amount of noise reduction is subtracted from the predicted result of the non-serrated blade and the total reduction of the noise from the rotor blades is calculated.

브레이드 외형(外形)이 풍력(風力) 터어빈의 공력(空力) 성능(性能)에 미치는 영향 (Aerodynamic Performance of a Wind-Turbine Affected by Blade Configuration)

  • 손병찬
    • 태양에너지
    • /
    • 제6권2호
    • /
    • pp.86-92
    • /
    • 1986
  • This paper presents the aerodynamic performances of horizontal axis wind turbines with non-twisted but taperd blades. Five configurations of blades, namely, one straight blade and four tapered blades with taper ratio of ranging from 0.1 to 0.7 have been simulated. The aerodynamic performances of the wind turbines have been determined over blade incidence angle of ranging from $2^{\circ}$ to $6^{\circ}$ and keeping same solidity and radius of them. The results are presented comparing straight blade from four tapered blades for maximum power coefficient and tip looses against variation of taper ratio. It also shows that the wind turbine with taper ratio of 0.5 has the highest maximum power coefficient than others. And wind turbines with taper ratio below 0.2 have lower values of maximum power coefficients than straight one. The tip loss of straight blade is the largest and reduces Slightly with the decrementation of taper ratio.

  • PDF

블레이드 형태에 따른 소형 수직축 풍력발전기의 실험적 연구 (Experimental Study of Small Vertical Axis Wind Turbine according to Type of Blades)

  • 이민구;오훈;박왈서
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.88-92
    • /
    • 2017
  • 풍력은 자원이 풍부하고, 끊임없이 재생되며, 공해물질 배출이 없어서 친환경적인 점에서 화석에너지 고갈 시에 대비한 유망한 대체 에너지원으로서 각광받는 에너지이다. 풍력발전기는 회전축의 방향에 따라 수평축 풍력발전기와 수직축 풍력발전기로 구분되며, 수직축은 발전효율이 낮은 단점이 있는 반면에 바람의 방향에 영향을 받지 않아 요잉 시스템이 필요가 없어 구조가 간단하고, 저 풍속에서도 풍력발전이 가능한 장점이 있어 현재 소형 수직축 풍력발전기가 주목받고 있다. 본 연구에서는 저 풍속에서도 발전 가능한 자이로밀형, 힌지형, 양문형의 블레이드 형태에 따른 소형 수직형 풍력발전기를 이용하여 1m/s~11m/s의 가변풍속에 따른 발전기의 출력전압 및 출력전류를 분석하였다. 연구결과 최대풍속 11m/s일 때 발전기 출력전압은 양문형 블레이드를 적용 시 자이로밀형 블레이드보다 67%, 힌지형 블레이드보다 9%가 증가되었으며, 발전기 출력전류는 양문형 블레이드를 적용 시 자이로밀형 블레이드보다 93%, 힌지형 블레이드보다 5%가 증가되었다. 본 연구를 통해 저풍속 및 고풍속에서의 발전이 용이한 양문형 블레이드의 우수한 출력특성과 실용화 가능성을 확인하였다.

날개 틸팅형 풍력발전기의 출력과 날개 표면의 압력분포에 대한 3차원 유동 해석 (Power Coefficient and Pressure Distributions on Blade Surfaces of a Wind Turbine with Tiltable Blades by 3D Simulations)

  • 정창도;배현우;성재용
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a new shape of wind turbine with horizontal axis has been proposed. The proposed wind turbine has two pairs of 3 tiltable blades which minimizes air resistance during the reverse rotational direction. Under a given wind speed, 3D numerical simulations on tiltable blades were performed for various TSRs(tip-speed-ratios). Four cases of rotational position was considered to analyze the torque and wind power generated on the blade surfaces. The results show that the maximum wind power occurs at the TSR of 0.2. Due to the blade tilting, the wind passes through the blade without air resistance at the reverse rotational direction. The torque is mainly caused by pressure differences between the front and rear surface of the blade, and it becomes maximum when the blade is located at the azimuth angle of 330°.

풍력터빈 블레이드 주위 흐름의 유동특성에 대한 실험적 분석 (Experimental Analysis of Flow Characteristics around Wind-Turbine Blades)

  • 이정엽;이상준
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.64-71
    • /
    • 2010
  • The flow and noise characteristics of wake behind wind-turbine blades have been investigated experimentally using a two-frame particle image velocimetry (PIV) technique. Experiments were carried out in a POSTECH subsonic large wind-tunnel ($1.8^W{\times}1.5^H{\times}4.3^L\;m^3$) with KBP-750D (3-blade type) wind-turbine model at a freestream velocity of $U_o\;=\;15\;m/s$ and a tip speed ratio $\lambda\;=\;6.14$ (2933 rpm). The wind-turbine blades are connected to an AC servo motor, brake, encoder and torque meter to control the rotational speed and to extract a synchronization signal for PIV measurements. The wake flow was measured at four azimuth angles ($\phi\;=\;0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$) of the wind-turbine blade. The dominant flow structure of the wake is large-scale tip vortices. The turbulent statistics such as turbulent intensity are weakened as the flow goes downstream due to turbulent dissipation. The dominant peak frequency of the noise signal is identical to the rotation frequency of blades. The noise seems to be mainly induced by the tip vortices.

Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades

  • Ghasemi, Ahmad Reza;Jahanshir, Arezu;Tarighat, Mohammad Hassan
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.103-116
    • /
    • 2014
  • Aeroelasticity is the main source of instability in structures which are subjected to aerodynamic forces. One of the major reasons of instability is the coupling of bending and torsional vibration of the flexible bodies, which is known as flutter. The presented investigation aims to study the aeroelastic stability of composite blades of wind turbine. Geometry, layup, and loading of the turbine blades made of laminated composites were calculated and evaluated. To study the flutter phenomenon of the blades, two numerical and analytical methods were selected. The finite element method (FEM), and JAR-23 standard were used to perform the numerical studies. In the analytical method, two degree freedom flutter and Lagrange's equations were employed to study the flutter phenomena analytically and estimate the flutter speed.

경량화 복합재를 이용한 풍력 블레이드 개발과 해석에 관한 연구 (A Study on Development and Analysis for Wind Turbine Blades Using Composites Materials)

  • 강병윤;한정영;홍철현;문병영
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.59-64
    • /
    • 2011
  • Wind turbine blades will be required to be longer, lighter, more reliable and more consistent. Therefore it is necessary to lose weight of the wind turbine blades. This points squarely toward prepreg blade production growing. It is important to note however that prepreg blade production as it is today is flawed and that there are ways to improve greatly on the performance of these blades in manufacturing process and in their in-service performance. Through this, we have some detail on the current process and its advantage of cost and weight of blades.

정격풍속 이하에서 풍력터빈의 윈드쉬어 추력 동하중 개발 (Evaluation of Dynamic Thrust Under Wind Shear in Wind Turbine Below Rated Wind Speed)

  • 임채욱
    • 대한기계학회논문집A
    • /
    • 제40권4호
    • /
    • pp.407-414
    • /
    • 2016
  • 풍력터빈이 MW급으로 대형화되면서 블레이드의 길이가 40미터 이상으로 길어지게 되어, 로터 블레이드가 회전할 때 블레이드에 발생하는 비대칭하중이 증가하게 되었다. 윈드쉬어, 타워 섀도우, 난류풍속 같은 요소들은 블레이드에 이런 비대칭하중 발생에 영향을 미친다. 본 논문은 원드쉬어로 인해 블레이드에 발생하는 추력변동에 의한 동하중을 추력계수를 이용하여 모델링하는 방법에 관한 것이다. 이를 위하여 "윈드쉬어 추력변동 계수"를 정의 및 도입하고, 2MW 육상용 풍력터빈을 대상으로 정격이하의 풍속에서 윈드쉬어 추력변동 계수값을 구하여 분석한다. 구해진 "윈드쉬어 추력변동 계수"와 추력계수를 이용하여 Matlab/Simulink에서 윈드쉬어 동하중 모델을 구현하고, 윈드쉬어에 의해 세 블레이드에 작용하는 추력변동을 추력계수와 "윈드쉬어 추력변동 계수"를 동시에 이용하여 표현할 수 있음을 보인다.