• Title/Summary/Keyword: Wind Wave Model

Search Result 314, Processing Time 0.023 seconds

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-90
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable from deep to shallow water. The dynamically coupled model consists of hydrodynamic module and wind wave module. The hydrodynamic module is modified from POM and wind wave module is modified from WAM to be applicable from deep to shallow water. Hydrodynamic module computes tidal currents, sea surface elevations and storm surges and provide these information to wind wave module. Wind wave mudule computes wind waves and provides computed information such as radiation stress, sea surface roughness and shear stress due to winds. The newly developed model was applied to compute the surge, tide and wave fields by typhoon Maemi. Verification of model performance was made by comparison of measured waves and tide data with simulated results.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I

  • Pham, Thanh Dam;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.980-992
    • /
    • 2019
  • This paper describes a model test and numerical simulation of a 750-kW-semi-submersible platform wind turbine under several wind and wave conditions for validation of the numerical simulation model. The semi-submersible platform was designed to support the 750-kW-wind turbine class and operate at a water depth of 50 m. The model tests were performed to estimate the performance characteristics of the wind turbine system in the wide tank of the University of Ulsan. Motions and loads of the wind turbine system under the wind and wave conditions were measured and analyzed. The NREL-FAST code was used to simulate the wind turbine system, and the results were compared with those of the test model. The results demonstrate that the numerical simulation captures noticeably the fully coupled floating wind turbine dynamic responses. Also, the model shows a good stability and small responses during waves, wind, and operation of the 750-kW-floating offshore wind turbine.

The effects of topography on local wind-induced pressures of a medium-rise building

  • Hitchcock, P.A.;Kwok, K.C.S.;Wong, K.S.;Shum, K.M.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.433-449
    • /
    • 2010
  • Wind tunnel model tests were conducted for a residential apartment block located within the complex terrain of The Hong Kong University of Science and Technology (HKUST). The test building is typical of medium-rise residential buildings in Hong Kong. The model study was conducted using modelling techniques and assumptions that are commonly used to predict design wind loads and pressures for buildings sited in regions of significant topography. Results for the building model with and without the surrounding topography were compared to investigate the effects of far-field and near-field topography on wind characteristics at the test building site and wind-induced external pressure coefficients at key locations on the building facade. The study also compared the wind tunnel test results to topographic multipliers and external pressure coefficients determined from nine international design standards. Differences between the external pressure coefficients stipulated in the various standards will be exacerbated when they are combined with the respective topographic multipliers.

The Modulation of Currents and Waves near the Korean Marginal seas computed by using MM5/KMA and WAVEWATHC-III model

  • Seo, Jang-Won;Chang, You-Soon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.37-42
    • /
    • 2003
  • We have analyzed the characteristics of the sea surface winds and wind waves near the Korean marginal seas on the basis of prediction results of the sea surface winds from MM5/KMA model, which is being used for the operation system at the Korea Meteorological observation buoy data to verify the model results during Typhoon events. The correlation coefficients between the models and observation data reach up to about 95%, supporting that these models satisfactorily simulate the sea surface winds and wave heights even at the coastal regions. Based on these verification results, we have carried out numerical experiments about the wave modulation. When there exist an opposite strong current for the propagation direction of the waves or wind direction, wave height and length gets higher and shorter, and vice versa. It is proved that these modulations of wave parameters are well generated when wind speed is relatively week.

  • PDF

Experimental investigation on a freestanding bridge tower under wind and wave loads

  • Bai, Xiaodong;Guo, Anxin;Liu, Hao;Chen, Wenli;Liu, Gao;Liu, Tianchen;Chen, Shangyou;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.951-968
    • /
    • 2016
  • Long-span cross-strait bridges extending into deep-sea waters are exposed to complex marine environments. During the construction stage, the flexible freestanding bridge towers are more vulnerable to environmental loads imposed by wind and wave loads. This paper presents an experimental investigation on the dynamic responses of a 389-m-high freestanding bridge tower model in a test facility with a wind tunnel and a wave flume. An elastic bridge model with a geometric scale of 1:150 was designed based on Froude similarity and was tested under wind-only, wave-only and wind-wave combined conditions. The dynamic responses obtained from the tests indicate that large deformation under resonant sea states could be a structural challenge. The dominant role of the wind loads and the wave loads change according to the sea states. The joint wind and wave loads have complex effects on the dynamic responses of the structure, depending on the approaching direction angle and the fluid-induced vibration mechanisms of the waves and wind.

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • 임춘규;이호영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • The FPSO is moored by mooring lines to keep the position of it. The nonlinear motion analysis of the moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper, the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

Examinations on the Wave Hindcasting of the Abnormal Swells in the East Coast (동해안 이상 너울 추산에 관한 고찰)

  • Kim, Tae-Rim;Lee, Kang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.13-19
    • /
    • 2008
  • Abnormally large swells that appeared on the coast of the East Sea in October in 2005 and 2006 were simulated using SWAN model to examine the accuracy of the model for future forecasting Seawind data calculated based on the weather chart ant bottom topography were used for input data, and the model was operated more than 20 days before the observed swells to avoid the problems from the cold start of the model. The comparisons with observed wind and wave data were unsatisfactory and neededmore improvement in terms of swell component in the wave model as well as the quality of seawind data. The satellite wind and wave data can be good candidates for future comparison of the wave model results in the East Sea.

Dynamic Behavior Analysis of Floating Offshore Wind Turbine Including Flexible Effects of Tower and Blade (타워와 블레이드의 탄성효과를 고려한 부유식 해상풍력발전기의 동적거동해석)

  • Jung, Hye-Young;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.905-911
    • /
    • 2012
  • To establish a floating offshore wind turbine simulation model, a tension leg platform is added to an onshore wind turbine. The wind load is calculated by using meteorological administration data and a power law that defines the wind velocity according to the height from the sea surface. The wind load is applied to the blade and wind tower at a regular distance. The relative Morison equation is employed to generate the wave load. The rated rotor speed (18 rpm) is applied to the hub as a motion. The dynamic behavior of a 2-MW floating offshore wind turbine subjected to the wave excitation and wind load is analyzed. The flexible effects of the wind tower and the blade are analyzed. The flexible model of the wind tower and blade is established to examine the natural frequency of the TLP-type offshore wind turbine. To study the effect of the flexible tower and blade on the floating offshore wind turbine, we modeled the flexible tower model and flexible tower-blade model and compared it with a rigid model.

Response of the Wave Spectrum to Turning Winds (풍향 변화에 대한 파랑 스펙트럼의 반응)

  • 윤종태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.111-121
    • /
    • 1997
  • The spectral energy balance model is composed and the nonlinear interaction is approximated by the discrete interaction parameterization as in WAM model. The numerical results of durational limited growth test agree very well with those of the exact model, EXACT-NL. The response of a wave spectrum to a change in wind direction is investigated numerically for a sequence of direction changes 30$^{\circ}$ , 45$^{\circ}$ , 60$^{\circ}$ , 90$^{\circ}$ . The high frequency components relax more repidly to the new wind direction than the low frequency components and the relaxation process also depends on the wave age. For wind direction changes less than 60$^{\circ}$ , the coupling by nonlinear interaction is so strong that the secondary peak in input source distribution is counteracted by the negative lobe of the nonlinear interaction. For wind direction changes grater than 60$^{\circ}$ , a second independent wind-sea spectrum is generated in the new wind direction, while the old spectrum gradually decays as swell.

  • PDF

A Study on the Methods to Improve High-Wave Reproducibility during Typhoon (태풍 내습 시의 고파 재현성 개선방안 연구)

  • Jong-Dai, Back;Kyong-Ho, Ryu;Jong-In, Lee;Weon-Mu, Jeong;Yeon-S., Chang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.177-187
    • /
    • 2022
  • This study estimates the design wave in the event of a typhoon attack at Busan new port using the wind field, the revised shallow water design wave estimation method proposed by the Ministry of Oceans and Fisheries in 2020, and proposed a reliable method of calculating the shallow water design through verification with the wave observation data. As a result of estimating typhoon wave using the wind field and SWAN numerical model, which are commonly used in the field work, for typhoon that affected Busan new port, it was found that reproducibility was not good except typhoons KONG-REY(1825) and MAYSAK(2009). In particular, in the case of typhoon MAEMI(0314), which had the greatest impact on Busan new port, the maximum significant wave height was estimated to be about 35.0% smaller than that of the observed wave data. Therefore, a plan to improve the reproducibility of typhoon wave was reviewed by applying the method of correcting the wind field and the method of using the Boussinesq equation numerical model, respectively. As a result of the review, it was found that the reproducibility of the wind field was not good as before when the wind field correction. However as a method of linking wind field data, SWAN model results, and Boussinesq numerical model, typhoon wave was estimated during typhoon MAEMI(0314), and the maximum significant wave was similar to the wave observations, so it was reviewed to have good reproducibility.