• Title/Summary/Keyword: Wind Turbulence

Search Result 616, Processing Time 0.023 seconds

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

Numerical Study on the Observational Error of Sea-Surface Winds at leodo Ocean Research Station (수치해석을 이용한 이어도 종합해양과학기지의 해상풍 관측 오차 연구)

  • Yim Jin-Woo;Lee Kyung-Rok;Shim Jae-Seol;Kim Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.189-197
    • /
    • 2006
  • The influence of leodo Ocean Research Station structure to surrounding atmospheric flow is carefully investigated using CFD techniques. Moreover, the validation works of computational results are performed by the comparison with the observed data of leodo Ocean Research station. In this paper, we performed 3-dimensional CAD modelling of the station, generated the grid system for numerical analysis and carried out flow analyses using Navier-Stokes equations coupled with two-equation turbulence model. For suitable free stream conditions of wind speed and direction, the interference of the research station structure on the flow field is predicted. Beside, the computational results are benchmarked by observed data to confirm the accuracy of measured date and reliable data range of each measuring position according to the wind direction. Through the results of this research, now the quantitative evaluation of the error range of interfered gauge data is possible, which is expected to be applied to provide base data of accurate sea surface wind around research stations.

Effects of Meteorological and Reclaiming Conditions on the Reduction of Suspended Particles (기상 조건과 매립 조건이 비산 먼지 발생에 미치는 영향)

  • Choi, Jae-Won;Lee, Young-Su;Kim, Jae-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1423-1436
    • /
    • 2010
  • The effects of meteorological and reclaiming conditions on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the k-$\varepsilon$ turbulence closure scheme based on the renormalization group (RNG) theory. Twelve numerical experiments with different meteorological and reclaiming conditions are performed. For identifying the meteorological characteristics of the target area and providing the inflow conditions of the CFD model, the observed data from the automatic weather station (AWS) near the target area is analyzed. Complicated flow patterns such as flow distortion, horse-shoe vortex, recirculation zone, and channeling flow appeared due to the topography and buildings in the domain. Specially, the flow characteristics around the reclamation area are affected by the reclaiming height, reclaiming size and windbreak height. Reclaiming height affected the wind speed above the reclaiming area. Windbreak induces more complicated flow patterns around the reclaiming area as well as within the reclaiming area. In front of the windbreak, flow is distorted as it impinges on the windbreak. As a result, upward flow is generated there. Behind the windbreak, a secondary circulation, so called, a recirculation zone is generated and flow is reattached at the end of the recirculation zone (reattachment point). At the lower part of the recirculation zone, there is a reverse flow toward the windbreak. Flow passing to the reattachment point starts to be recovered. Total amounts of suspended particles are calculated using the frictional and threshold frictional velocities, erosion potential function, and the number of surface disturbance. In the case of a 10 m-reclaiming and northerly wind, the amount of suspended particles is largest. In the presence of 5 m windbreak, the friction velocity above the reclaiming area is largely reduced. As a result, the total amount of the suspended particles largely decreases, compared to the case with the same reclaiming and meteorological conditions except for the windbreak The calculated suspended particle amounts are used as the emission rate of the dispersion model simulations and the dispersion characteristics of the suspended particles are analyzed.

On Estimation of Zero Plane Displacement from Single-Level Wind Measurement above a Coniferous Forest (침엽수림 상부의 단일층 풍속 관측으로부터의 영면변위 추정에 관하여)

  • Yoo, Jae-Ill;Hong, Jin-Kyu;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.45-62
    • /
    • 2010
  • Zero plane displacement (d) is the elevated height of the apparent momentum sink exerted by the vegetation on the air. For a vegetative canopy, d depends on the roughness structure of a plant canopy such as leaf area index, canopy height and canopy density, and thus is critical for the analysis of canopy turbulence and the calculation of surface scalar fluxes. In this research note, we estimated d at the Gwangneung coniferous forest by employing two independent methods of Rotach (1994) and Martano (2000), which require only a single-level eddy-covariance measurement. In general, these two methods provided comparable estimates of $d/h_c$ (where $h_c$ is the canopy height, i.e., ~23m), which ranged from 0.51 to 0.97 depending on wind directions. These estimates of $d/h_c$ were within the ranges (i.e., 0.64~0.94) reported from other forests in the literature but were sensitive to the forms of the nondimensional functions for atmospheric stability. Our finding indicates that one should be careful in interepreation of zero plane displacement estimated from a single-level eddy covariance measurement that is conductaed within the roughness sublayer.

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.

Structure and Evolution of a Numerically Simulated Thunderstorm Outflow (수치 모사된 뇌우 유출의 구조와 진화)

  • Kim, Yeon-Hee;Baik, Jong-Jin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.857-870
    • /
    • 2007
  • The structure and evolution of a thunderstorm outflow in two dimensions with no environmental wind are investigated using a cloud-resolving model with explicit liquid-ice phase microphysical processes (ARPS: Advanced Regional Prediction System). The turbulence structure of the outflow is explicitly resolved with a high-resolution grid size of 50m. The simulated single-cell storm and its associated Kelvin-Helmholtz (KH) billows are found to have the lift stages of development maturity, and decay. The secondary pulsation and splitting of convective cells resulted from interactions between cloud dynamics and microphysics are observed. The cooled downdrafts caused by the evaporation of rain and hail in the relatively dry lower atmosphere result in thunderstorm cold-air outflow. The outflow head propagates with almost constant speed. The KH billows formed by the KH instability cause turbulence mixing from the top of the outflow and control the structure of the outflow. Ihe KH billows are initiated at the outflow head, and pow and decay as moving rearward relative to the gust front. The numerical simulation results of the ratio of the horizontal wavelength of the fastest growing perturbation to the critical shear-layer depth and the ratio of the horizontal wavelength of the billow to its maximum amplitude are matched well with the results of other studies.

Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House (돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발)

  • Kim, Rack-woo;Lee, In-bok;Ha, Tae-hwan;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Min-hyung;Park, Gwan-yong;Kim, Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.

Numerical Simulation of Spatiotemporal Distribution of Chaff Clouds for Warship Defense using CFD-DEM Coupling (CFD-DEM 연동을 통한 함정용 채프운의 시공간 분포 해석)

  • Uk Jin Jung;Moonhong Kim;Dongwoo Sohn
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.93-103
    • /
    • 2023
  • Warships widely spread numerous chaffs using a blast, which form chaff clouds that create false radar cross-sections to deceive enemy radars. In this study, we established a numerical framework based on a one-way coupling of computational fluid dynamics and discrete element method to simulate the spatiotemporal distribution of chaff clouds for warships in the air. Using the framework, we investigated the effects of wind, initial chaff cartridge angle, and blast pressure on the distribution of chaff clouds. We observed three phases for the chaff cloud diffusion: radial diffusion by the explosion, omnidirectional diffusion by turbulence and collision, and gravity-induced diffusion by the difference in the fall speed. The wind moved the average position of the chaff clouds, and the diffusion due to drag force did not occur. The direction of radial diffusion by the explosion depended on the initial angle of the cartridge, and a more vertical angle led to a wider distribution of the chaffs. As the blast pressure increased, the chaff clouds spread out more widely, but the distribution difference in the direction of gravity was not significant.

Analysis of Clutter Effects in a Weather Radar (기상 레이다에서의 클러터 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1641-1648
    • /
    • 2016
  • A weather radar estimates Doppler frequency and width of Doppler spectrum from the received weather signal which represents the return echoes from rain or dust particles in a corresponding area. These estimates are very important parameters since they are directly related to precipitation, wind velocity and degree of turbulence. Therefore, these estimated values should be highly reliable to obtain accurate weather information. However, the echoes of a weather radar include both the weather signal and the clutter which occurred from ground reflection or moving objects, etc. The existence of the clutter in the echoes may cause serious errors in the estimation of weather-related parameters. Therefore, in this paper, models are developed to represent the weather signal and the clutter for the purpose of analyzing estimation errors caused by the strong clutter echoes. Using these models, various return echoes according to the weather signal and clutter power are simulated to analyze the effects of the clutter.

A measurement of flow noise spectrum of an axisymmetric body (축대칭 3차원 물체의 유동 소음 스펙트럼 측정)

  • Park, Yeon-Gyu;Kim, Yang-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.725-733
    • /
    • 1998
  • The pressure fluctuation on the surface of a submerged body has been recognized as a dominant noise source. There have been many studies concerning the flow induced noise on a flat plate. However, the noise over an axisymmetric body has not been well reported. This paper addresses the way in which we have investigated the mechanism of noise generation due to an axisymmetric body. The associated experiments and signal processing methods are introduced. A 3-dimensional axisymmetric body whose length and diameter were 2 m and 10.4 cm, was prepared as a test specimen. The wall pressure on the surface of the body was measured in a large scale low noise wind tunnel at KIMM(Korea Institute of Machinery and Metals). To measure the wall pressure, we used two microphone arrays which were tangential and normal to the flow. Based on the measured signal, frequency-wavenumber spectrum which explains the structure of turbulence noise, was estimated. Tangential to the flow, there exists convective ridge at a relatively higher wavenumber region; this can cause spatial aliasing. To circumvent this problem, the cross spectrum was interpolated. The interpolation has been performed by unwrapping the phase and smoothing the cross spectrum. The phase unwrapping was done based on the Corcos model; the phase of cross spectrum decreases linearly with the distance between microphones. Aforementioned signal processings are possible by employing the experimental results that the estimated wavenumber spectrum quite resembles the Corcos model. We try to modify the Corcos model which is applicable to the flat plate, by altering the magnitude of cross spectrum to fit the experimental data more accurately. We proposed that this wavenumber spectrum model is suitable for the 3-dimensional axisymmetric body. Normal to the flow, there exists a little correlation between signals of different microphones. The circumferential wavenumber spectrum contains uniform power along the wavenumbers.