Browse > Article
http://dx.doi.org/10.5532/KJAFM.2010.12.1.045

On Estimation of Zero Plane Displacement from Single-Level Wind Measurement above a Coniferous Forest  

Yoo, Jae-Ill (Biometeorological Laboratory / Global Environment Laboratory, Department of Atmospheric sciences, Yonsei University)
Hong, Jin-Kyu (National Institute for Mathematical Sciences)
Kwon, Hyo-Jung (Biometeorological Laboratory / Global Environment Laboratory, Department of Atmospheric sciences, Yonsei University)
Lim, Jong-Hwan (Division of Forest Conservation, Korea Forest Research Institute)
Kim, Joon (Biometeorological Laboratory / Global Environment Laboratory, Department of Atmospheric sciences, Yonsei University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.12, no.1, 2010 , pp. 45-62 More about this Journal
Abstract
Zero plane displacement (d) is the elevated height of the apparent momentum sink exerted by the vegetation on the air. For a vegetative canopy, d depends on the roughness structure of a plant canopy such as leaf area index, canopy height and canopy density, and thus is critical for the analysis of canopy turbulence and the calculation of surface scalar fluxes. In this research note, we estimated d at the Gwangneung coniferous forest by employing two independent methods of Rotach (1994) and Martano (2000), which require only a single-level eddy-covariance measurement. In general, these two methods provided comparable estimates of $d/h_c$ (where $h_c$ is the canopy height, i.e., ~23m), which ranged from 0.51 to 0.97 depending on wind directions. These estimates of $d/h_c$ were within the ranges (i.e., 0.64~0.94) reported from other forests in the literature but were sensitive to the forms of the nondimensional functions for atmospheric stability. Our finding indicates that one should be careful in interepreation of zero plane displacement estimated from a single-level eddy covariance measurement that is conductaed within the roughness sublayer.
Keywords
Zero plane displacement; KoFlux; Coniferous forest; Logarithmic wind profile; Similarity theory;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Arya, S. P 2001: Introduction to micrometeorology. AcademicPress, London, UK, 188-203.
2 Beljaars, A. C. M., P. Schotanus, and F. T. M. Nieuwstadt,1983: Surface layer similarity under nonuniform fetchconditions. Journal of Applied Meteorology 22(10),1800-1810.   DOI
3 de Bruin, H. A. R., and C. J. Moore, 1985: Zero-planedisplacement and roughness length for tall vegetation,derived from a simple mass conservation hypothesis.Boundary-Layer Meteorology 31(1), 39-49.   DOI
4 Foken, T., 2006: 50 Years of the Monin–Obukhov similaritytheory. Boundary-Layer Meteorology 119(3), 431-447.   DOI
5 Kaimal, J. C. and J. J. Finnigan, 1994: Atmospheric BoundaryLayer Flows. Oxford University Press, New York, 15-21pp.
6 Katul, G., S. M. Goltz, C.-I. Hsieh, Y. Cheng, F. Mowry,and J. Sigmon, 1995: Estimation of surface heat andmomentum fluxes using the flux-variance method aboveuniform and non-uniform terrain. Boundary-LayerMeteorology 74(3), 237-260.   DOI
7 Sozzi, R., M. Favaron, and T. Georgiadis, 1998: Methodfor Estimation of Surface Roughness and SimilarityFunction of Wind Speed Vertical Profile. Journal ofApplied Meteorology 37(5), 461-469.   DOI
8 Stull, R. B. 1988: An Introduction to Boundary LayerMeteorology. Kluwer Academic Publishers, Dordrecht,The Netherlands, 262-263 pp.
9 Tillman, J. E., 1972: The indirect determination of stability,heat and momentum fluxes in the atmospheric boundarylayer from simple scalar variables during dry unstableconditions. Journal of Applied Meteorology 11(5), 783-792.   DOI
10 Takagi, K., A. Miyata, Y. Harazono, N. Ota, M. Komine,and M. Yoshimoto, 2003: An alternative approach todetermining zero-plane displacement, and its applicationto a lotus paddy field. Agricultural and Forest Meteorology115(3-4), 173-181.   DOI
11 Wiernga, J., 1993: Representative roughness parameters forhomogeneous terrain. Boundary-Layer Meteorology 63(4),323-363.   DOI
12 Wyngaard, J. C., O. R. Cote, and Y. Izumi, 1971: Localfree convection, similarity, and the budgets of shearstress and heat flux. Journal of the Atmospheric Sciences28(7), 1171-1182.   DOI
13 Kim, J., D. Lee, J. Hong, S. Kang, S.-J. Kim, S.-K. Moon,J.-H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B.Lee, B.-L. Lee, and S. Kim, 2006: HydroKorea andCarboKorea: cross-scale studies of ecohydrology andbiogeochemistry in a heterogeneous and complex forestcatchment of Korea. Ecological Research 21(6), 881-889.   DOI
14 Molion, L. C. B., and C. J. Moore, 1983: Estimating thezero-plane displacement for tall vegetation using a massconservation method. Boundary-Layer Meteorology 26(2),115-125.   DOI
15 Lee, D., J. Kim, S.-J. Kim, S.-K. Moon, J. Lee, J.-H. Lim,Y. Son, S. Kang, S. Kim, K. Kim, N. Woo, B. Lee, andS. Kim, 2007: Lessons from cross-scale studies of waterand carbon cycles in the Gwangneung forest catchmentin a complex landscape of monsoon Korea. Korean.Journal of Agricultural and Forest Meteorology 9(2),149-160.   과학기술학회마을   DOI
16 Lim, J.-H., 2006: Ecological measurement and analysis.Development of HydroKorea - Sustainable Water ResourcesResearch Program, 300 pp.
17 Lloyd, C. R., A. D. Culf, A. J. Dolman, and J. H. C. Gash,1991: Estimates of sensible heat flux from observationsof temperature fluctuations. Boundary-Layer Meteorology57(4), 311-322.   DOI
18 Moon, S.-K., S.-H. Park, J. Hong, and J. Kim, 2005: Spatial Characteristics of Gwangneung Forest Site Based onHigh Resolution Satellite Images and DEM. KoreanJournal of Agricultural and Forest Meteorology 7(1),115-123.   과학기술학회마을
19 Raupach, M. R. 1994: Simplified expressions for vegetationroughness length and zero-plane displacement asfunctions of canopy height and area index. Boundary-Layer Meteorology 71, 211-216.   DOI
20 Shaw, R. H., and A. R. Pereira, 1982: Aerodynamic Roughnessof a Plant Canopy - a Numerical Experiment. AgriculturalMeteorology 26, 51-65.   DOI