• Title/Summary/Keyword: Wind Turbine Generator

Search Result 504, Processing Time 0.031 seconds

Starting Characteristics of Darrieus Wind Turbine (다리우스 풍력터빈 발전기의 기동특성)

  • Lee, Kyu-Yong;Lee, Woo-Suk;Seo, Young-Teak;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1018-1020
    • /
    • 2003
  • Wind-powered generator system converts wind energy into utilized electric energy. Wind power generator is classified into two categories, as horizontal or vertical axis turbine. The former is equipped with yawing mechanism which is subject to set the blade-face towards the wind direction. However, the latter does not need this mechanism, but this system needs a external power for starting. This paper deals with the method how to overcome such trouble and with the analysis of the starting characteristic and a field test with a prototype of the Darrieus wind generator was performed.

  • PDF

Modeling Techniques for The Dynamic Characteristics Analysis of Drivetrain in Wind Turbine (풍력터빈 드라이브트레인의 동특성 해석을 위한 모델링 기법)

  • Lim, Dong-Soo;Lee, Seung-Kyu;Cho, Joon-Haeng;Ahn, Kyong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.286-289
    • /
    • 2008
  • Wind turbine industry is booming and spending a lot on research for improving the performance of its present machines and increasing their capacity. Wind turbine requires service life of about 20 years and each components of wind turbine requires high durability, because installation and maintenance costs are more expensive than generated electricity by wind-turbine. So the design of wind turbine must be verified in various condition before production step. For this work, high reliability model for analysis is required. Drivetrain model is modeled by multibody dynamic modeling method. The model constituted with rotor blades, hub, main shaft, gear box, high speed shaft and generator. Natural frequency and torsional stiffness of drivetrain are calculated and analyzed.

  • PDF

Modeling Techniques for The Dynamic Characteristics Analysis of Drivetrain in Wind Turbine (풍력터빈 드라이브트레인의 동특성 해석을 위한 모델링 기법)

  • Lim, Dongsoo;Lee, Seungkyu;Yang, Bosuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.583-586
    • /
    • 2012
  • Wind turbine industry is booming and spending a lot on research for improving the performance of its present machines and increasing their capacity. Wind turbine requires service life of about 20 years and each canponents of wind turbine requires high durability, because installation and maintenance costs are more expensive than generated electricity by wind-turbine. So the design of wind turbine must be verified in various condition before production step. For this work, high reliability model for analysis is required. Drivetrain model is modeled by multibody dynamic modeling method. The model constituted with rotor blades, hub, main shaft, gear box, high speed shaft and generator. Natural frequency and torsional stiffness of drivetrain are calculated and analyzed.

  • PDF

Modeling & Operating Algorithm of Islanding Microgrid with PMSG Wind Turbine and Diesel Generator (영구자석형 풍력-디젤 복합발전시스템 모델링 및 운전제어 알고리즘에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6419-6424
    • /
    • 2015
  • Recently, high-cost energy storage systems are applying to hybrid generation systems with wind turbine and diesel generator in island areas for stable operation. But, this paper proposes an operating algorithm and modeling method of an islanding microgrid that is composed of PMSG(Permanent Magnet Synchronous Generator) and Diesel Generator applied in island areas without such energy storage system. Initially, the operating algorithm was proposed for frequency and voltage to be maintained within the proper ranges for the load and weather change. And then the modeling method were proposed for PMSG, WT-side AC/DC converter and Grid-side DC/AC converter. The proposed operating algorithm and modeling method were applied to a typical islanded microgrid with PMSG wind turbine and diesel generator. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

Wind Turbine Simulators Considering Turbine Dynamic Characteristics (터빈의 동특성을 고려한 풍력 터빈 시뮬레이터)

  • Park, Hong-Geuk;Abo-Khalil, Ahmed. G.;Lee, Dong-Choon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.617-624
    • /
    • 2008
  • This paper proposes design and implementation of wind turbine simulators which incorporate the turbine dynamic characteristics. At first, the turbine output characteristic in steady state is modelled as a function of wind speed and then dynamic characteristics are modelled such as pitch angle control, torsional vibration, tower shadow effect, wind shear effect, and inertia effect. In addition, a wind speed simulator is developed which can generate the real wind speed pattern. The wind turbine simulator is implemented with 3[kW] M-G set(cage-type induction motor coupled with doubly-fed induction generator) at laboratory.

Battery Energy Storage System Based Controller for a Wind Turbine Driven Isolated Asynchronous Generator

  • Singh, Bhim;Kasal, Gaurav Kumar
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents an investigation of a voltage and frequency controller for an isolated asynchronous generator (IAG) driven. by a wind turbine and supplying 3-phase 4-wire loads to the isolated areas where a grid is not accessible. The control strategy is based on the indirect current control of the VSC (voltage source converter) using the frequency PI controller. The proposed controller consists of three single-phase IGBT (Insulated Gate Bipolar Junction Transistor) based VSC, which are connected to each phase of the IAG through three single phase transformers and a battery at their DC link. The controller has the capability of controlling reactive and active powers to regulate the magnitude and frequency of the generated voltage, harmonic elimination, load balancing and neutral current compensation. The proposed isolated system is modeled and simulated in MATLAB using Simulink and PSB (Power System Block-set) toolboxes to verify the performance of the controller.

Diesel Generator-Wind Turbine-Battery Modeling Design and Analysis in Synchronous Condenser mode (Diesel Generator-Wind Turbine-Battery 모델링에 관한 설계 및 분석)

  • Kim, Jae-Kyung;Lee, Ji-Young;Lim, Song-Woon;Kim, Yong-Seon;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1100_1101
    • /
    • 2009
  • 본 논문은 대표적인 신재생에너지인 풍력발전에 관한 연구의 일환으로 RPM-Sim을 이용한 독립형 하이브리드 발전시스템의 시뮬레이션을 분석하였다. 시뮬레이션에서는 Wind Turbine, Diesel Generator, Rotary Converter, Village Load, Dump Load, PCC를 포함한 독립형 하이브리드 발전시스템을 구현하고, 이 하이브리드 시스템은 신재생에너지 자원인 풍력을 최대한 이용한 발전 시스템으로써 디젤 발전기의 사용을 최소한으로 줄여 부하를 충당할 수 있는 시스템을 구현하여 분석했다.

  • PDF

An Improved Control Method for a DFIG in a Wind Turbine under an Unbalanced Grid Voltage Condition

  • Lee, Sol-Bin;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.614-622
    • /
    • 2010
  • This paper presents a control method, which reduces the pulsating torque and DC voltage problems of a doubly fed induction generator (DFIG)-based wind turbine system. To reduce the torque and power ripple, a current control scheme consisting of a proportional integral (PI) controller is presented in a positive synchronously rotating reference frame, which is capable of providing precise current control for a rotor-side converter with separated positive and negative components. The power theory can reduce the oscillation of the DC-link voltage in the grid-side converter. In this paper, the generator model is examined, and simulation results are obtained with a 3 kW DFIG-based wind turbine system to verify the proposed control strategy.

Load Calculation of a 750 kW Direct-drive Wind Turbine Generator System (750kW급 직접구동형 풍력발전기의 부하계산)

  • Sohn, Y.U.;Park, I.S.;Kwon, S.J.;Kim, Y.C.;Son, J.B.;Kim, K.R.;Chung, C.W.;Chun, J.H.;Ryu, J.Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.649-655
    • /
    • 2003
  • Load calculation is indispensable for the construction of a large wind turbine generator system (WTGS). In procedures of load calculation, all conditions affecting to WTGS such as environment of site, operation, transport and installation have to be considered systematically. So the certification of WTGS is issued by assuring the load calculation. This work shows the generals of load calculation briefly and introduces the characteristics and results of load calculations for the 750 kW direct-drive WTGS (KBP-750D) which is under development by the consortium of POSTECH and UNISON.

  • PDF

A fuzzy logic Controller design for Maximum Power Extraction of variable speed Wind Energy Conversion System (가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계)

  • Kim, Jae-Gon;Kim, Byung-Yoon;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2307-2309
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

  • PDF