• 제목/요약/키워드: Wind Turbine Gearbox

검색결과 64건 처리시간 0.025초

증속기 현장시험 국내 적용 사례 및 절차 분석 (Domestic Application and Procedure Analysis of Gearbox Field Test)

  • 이광세;강민상;김석우;이진재
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.23-32
    • /
    • 2020
  • The wind turbine gearbox has the longest downtime among other major turbine components such as blades, generators, and main bearings. Therefore, gearbox manufacturers conduct rig tests to evaluate conformity in terms of design and function. Rig tests, however, have limited similarity compared with atmospheric wind turbine operating conditions. Rig test conditions are thoroughly controlled and maintained by testers and the component certificates of gearboxes issued through the test cannot fulfill wind farm operator's requirements. Hence, certification bodies such as DNV-GL and UL require a mandatory gearbox field test report for type certification. The Korea Energy Agency (KEA) also introduced gearbox field test as a part of the KS type certificate in 2016, although it is optional . In this paper, gearbox field test procedures and requirements are introduced, and the first domestic application case of the test is reported. The field test was conducted with a 1.5 MW wind turbine gearbox located in Jeju as the test object.

부하변동에 따른 풍력발전기용 증속기의 음향파워 특성 (Characteristics for Sound Power of Wind Turbine Gearbox by Load Variation)

  • 이재정;이승용;서영욱;이진현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.311-315
    • /
    • 2012
  • In these days, promising renewable energy, wind turbine is clean energy but has an environmental pollutant which is noise. Noise assessment is one of the major performance evaluations for wind turbine and nowadays, developing and research for measurement and method of the assessment considering environmental pollutants is being important. Object in this study is that figuring out sound power characteristic of the gearbox for wind turbine through measuring sound intensity. In back-to-back test, we can figure out the noise characteristic of the gearbox for wind turbine through comparing and measuring sound pressure level, sound power level in operating at the each load condition respectively.

  • PDF

통합설계프로그램을 이용한 2MW 풍력발전시스템용 기어박스의 최적설계에 관한 연구 (A Study on Optimum Design of 2MW Wind Turbine Gearbox Using a Integrated Design Software)

  • 최용혁;박구하;조준행;이인우;오세웅
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.249-252
    • /
    • 2006
  • Wind turbine gearbox is a complex mechanical system that includes gear trains, shafts, bearings, and gearbox housings. All these component are interacting with each other therefore changing certain design parameter will affect other components. RomaxDesigner enables a reduction in development period by simulating the full gearbox system. The gear pairs, bearings and shafts are represented as analysis objects and the complex components are modelled by means of reduced stiffness matrices. The software allows durability analysis and advanced contact analysis including the effects of system misalignments in gear and bearing. In this paper the 2MW wind turbine gearbox was model led and a study on optimum design was conducted

  • PDF

10MW급 해상풍력발전기 드라이브 트레인을 위한 마그네틱 기어의 속도별 설계 및 출력밀도 특성분석 (Power Density Characteristics Analysis and Design of Magnetic Gear according to Speed for Drive Train of 10MW Offshore Wind Turbine)

  • 김찬호;김용재
    • 전기학회논문지
    • /
    • 제64권12호
    • /
    • pp.1718-1723
    • /
    • 2015
  • The diameter of the rotor of 2MW wind turbine is being developed by a number of companies with more than 80m, reliability and economic efficiency of the wind power generator has been improved. The need for large-scale wind turbine with excellent economy has been attracting attention because the new orders and the location of the wind turbine market has reached a limit. Technology development for enlargement of wind turbine is possible not only the improvement of energy efficiency but also reduce the construction costs per unit capacity. However, mechanical gearboxes used in wind generators have problems of wear, damage, need for lubrication oil and maintenance. Therefore, we want to configure the gearbox of a large-scale wind turbine using a magnetic gear in order to solve these problems of mechanical gearbox.

주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석 (Vibration Analysis of wind turbine gearbox with frequency response analysis)

  • 박현용;박정훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

누적손상이론을 이용한 풍력증속기의 가속수명시험법 개발 (Development of accelerated life test method for the wind turbine Gearbox using cumulative damage theory)

  • 손기수;곽희성;강창훈;조준행
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.693-697
    • /
    • 2005
  • This study was performed to develop accelerated life test method of the wind-turbine gearbox using accumulated damage theory that used to model the fatigue of parts that receive variable load. The accumulated damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of the gearbox was described. Life distribution of the wind-turbine gearbox was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 140,600 hours and 99% reliability for one test sample According to the accumulated damage theory, because test time can shorten in case increase test load, test time could be reduced by 1.2 years when we put the load 1.2 times of rated load than 0.93 times of rated load that is equivalent load calculated by load spectrum of the wind turbine. This time, acceleration coefficient was 21.3. This accelerated test method was used to develop accelerated test method of gear reducer, gear and bearing as well as the industrial gearbox and it is considered to be applied comprehensively to mechanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

기어열의 형태를 고려한 중대형 풍력 발전기용 기어박스의 설계 특성 연구 (Study on Design Characteristics of Gearbox for Wind Turbine Considering the Type of Gear Train)

  • 이기훈;박재희;이근호;남용윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.387-390
    • /
    • 2007
  • The gearbox for wind turbine have been increased the size by the wind turbine is needed to produce bigger power. The optimal sizing for gearbox is demanded because of limited space on the nacelle. The volume and weight for the gearbox are influenced especially for size of it. Therefore, the purpose of this study investigates the design characteristics considering types of gear train structure for optimizing the volume and weight of the gearbox.

  • PDF

2.5MW 풍력발전기 기어박스 치형수정 (Gear Teeth Modification for a 2.5MW Wind Turbine Gearbox)

  • 이형우;강동권
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.109-117
    • /
    • 2014
  • This paper reports a method to modify the gear tooth profile of a wind turbine gearbox to reduce the noise caused by the impact of the gear teeth. The major causes of tooth impact are the elastic deformation of the gear teeth, shafts, and case of the gearbox under loading, and the fabrication tolerances in gear manufacturing. In this study, the tooth profile was modified considering the elastic deformation of the gear tooth and the tooth lead modification to compensate for tooth interference in the lead direction as a result of shaft deformations. The method was applied to the gearbox of a 2.5MW wind turbine, and the transmission error was characterized before and after modifying the gear teeth. For the modified gear teeth, the transmission error (67.6%) was lower by 17.8%. Additionally, the gear contact stress was reduced by 6.3%, to 22.3%.

풍력발전기용 3점 지지 드라이브 트레인의 지지 강성이 기어박스 입력하중에 미치는 영향 (The Influence of Suspension Stiffness on the Gearbox Input Loads in a 3-Point Suspension Wind Turbine Drive Train)

  • 남주석;남용윤
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.514-520
    • /
    • 2015
  • The effects of suspension stiffness on the reaction load of the gearbox suspension for a three-point suspension wind turbine drive train were investigated by finite element analysis. The reaction forces of the gearbox suspension appear to increase as the gearbox suspension stiffness increases; however, the main bearing stiffness has a reverse effect on the reaction forces. The influence of the gearbox suspension stiffness is greater than that of the main bearing. Since the suspensions must provide the gearbox with proper support, it is not practical to use soft gearbox suspension for small reaction forces. It is more feasible to use stiff main bearings. As a guideline for the main bearing stiffness in the present study, we propose a relative stiffness of 100-150% of the reference.

다양한 운전조건을 고려한 2MW 풍력증속기의 성능평가 (A Performance Assessment of 2MW Wind Turbine Gearbox by Considering Various Operating Conditions)

  • 조준행;박구하;문병선
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2007
  • Wind turbine gearbox is a complex mechanical system that includes gear trains, shafts, bearings, and gearbox housings. All these components are interacting with each other therefore it is important to assess the whole performance by considering the individual component design. In this paper, the performance assessment of 2MW wind turbine gearbox was conducted under various operating conditions at test bench and test result was compared with the design calculation.

  • PDF