• Title/Summary/Keyword: Wind Speed Data

Search Result 1,221, Processing Time 0.032 seconds

A Two-dimensional Numerical Study of Hummingbird's Flight Mechanisms and Flow Characteristics (벌새의 비행메커니즘과 유동특성에 대한 2차원 수치해석 연구)

  • Lee, Hyun-Do;Kim, Jin-Ho;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.729-736
    • /
    • 2009
  • In order to understand flow characteristics and flight mechanism of hummingbird's flapping flight, two-dimensional numerical analysis is carried out on the flapping motion of hummingbird, Selasphorus rufus. Hummingbird's flapping wing motion is realistically modeled from wind tunnel experimental data to perform numerical analysis. Numerical simulation shows that, as freestream velocity changes, wing trajectory is also adjusted and it substantially affects lift and thrust generation mechanism. According to this tendency, flight domain is separated as "low speed" and "high speed" regime, and each flight domain is studied for physical understanding. As a result, the lift generation during downstroke can be explained by the well-known effects, such as leading edge vortex effect, delayed stall, wake capture and so on. In addition, the lift generation during upstroke, the unique character of hummingbird, is also examined by detailed flow analysis. The thrust generation mechanism is investigated by examining the hummingbird's wing bone structure, vortex generation pattern and the resulting pressure gradient.

Analysis of Meteorological and Radiation Characteristics using WISE Observation Data (WISE 관측자료를 이용한 기상 및 복사 특성 분석)

  • Lee, Hankyung;Jee, Joon-Bum;Min, Jae-Sik;Kim, Sangil;Chae, Jung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • We analyzed the meteorological and radiation characteristics of Seoul metropolitan area using data from energy flux towers that were installed and operated by the Weather Information Service Engine (WISE). The meteorological and radiation variables included temperature, pressure, wind speed, wind direction, relative humidity, surface temperature, rainfall amount, upward and downward solar radiation, upward and downward longwave radiation, albedo and emissivity from 14 energy flux stations located in the Seoul metropolitan area from July 2016 to July 2017. According to the monthly data during the period, the albedo is low and emissivity is high at the Jungnang station in the urban and opposite at Bucheon station in the suburban area. For a station in natural state, the albedo was higher than urban stations because solar radiation reflects effectively. Relatively high temperatures were shown at stations located in urban area with low albedo and high emissivity, in general. However, temperature was high at Gajwa and Ttukseom stations, the albedo was relatively high due to the station environment surrounded by glass wall buildings and the Han river. In the station located in suburban area, both emissivity and temperature were low. Among these stations, Bucheon station had the highest emissivity values because the surface temperature was relatively lower than that of the suburban area. As a result, the albedo decreased and the emissivity increased at stations in urban areas. Additionally, Seoul metropolitan area had less than $100Wm^{-2}$ of net radiation, which implied that radiation energy could be absorbed in the atmosphere.

An analysis of Characteristics of Heavy Rainfall Events over Yeongdong Region Associated with Tropopause Folding (대류권계면 접힘에 의한 영동지방 집중호우사례의 특성분석)

  • Lee, Hye-Young;Ko, Hye-Young;Kim, Kyung-Eak;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.354-369
    • /
    • 2010
  • The synoptic and kinematic characteristics of a heavy rainfall that occurred in Gangneung region on 22 to 24 October 2006 were investigated using weather maps, infrared images, AWS observation data and NCEP global final analyses data. The total amount of rainfall observed in the region for the period was 316.5 mm, and the instanteneous maximum wind speed was $63.7m\;s^{-1}$. According to the analysis of weather maps, before the starting of the heavy rainfall, an extratropical low pressure system was developed in the middle region of the Korean Peninsula, and an inverted trough was formed in the northern region of the peninsula. In addition, a jet stream on the upper charts of 300 hPa was located over the Yellow Sea and the southern boundary of the peninsula. A cutoff low in the cyclonic shear side of the upper jet streak, which was linked to an anomaly of isentropic potential vorticity, was developed over the northwestern part of the peninsula. And there are analyzed potential vorticity and wind, time-height cross section of potential vorticity, vertical air motion, maximums of the divergence and convergence and vertical distribution of potential temperature in Gangneung region. The analyzed results of the synoptic conditions and kinematic processes strongly suggest that the tropopause folding made a significant role of initializing the heavy rainfall.

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management (LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발)

  • Lee, Seungjae;Jeon, Minsu;Lee, Jungmin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.312-320
    • /
    • 2020
  • Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

Spatio-Temporal Variations of Harmful Algal Blooms in the South Sea of Korea

  • Kim, Dae-Hyun;Denny, Widhiyanuriyawan;Min, Seung-Hwan;Lee, Dong-In;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.475-486
    • /
    • 2009
  • Harmful algal blooms (HAB) caused by the dominant species Cochlodinium polykrikoides (C. polykrikoides) appear in the South Sea of Korea and are particularly present in summer and fall seasons. Environmental factors such as water temperature, weather conditions (air temperature, cloud cover, sunshine, precipitation and wind) influence on the initiation and subsequent development of HAB. The purpose of this research was to study spatial and temporal variations of HAB in the Yeosu area using environmental (oceanic and meteorological) and satellite data. Chlorophyll-a concentrations were calculated using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) images by an Ocean Chlorophyll 4 (OC4) algorithm, and HAB were estimated using the Red tide index Chlorophyll Algorithm (RCA). We also used the surface velocity of sequential satellite images applying the Maximum Cross Correlation method to detect chlorophyll-a movement. The results showed that the water temperature during HAB occurrences in August 2002-2008 was $19.4-30.2^{\circ}C$. In terms of the frequency of the mean of cell density of C. polykrikoides, the cell density of the HAB found at low (<300 cells/ml), medium (300-1000 cells/ml), and high (>1000 cells/ml) levels were 27.01%, 37.44%, and 35.55%, respectively. Meteorological data for 2002-2008 showed that the mean air temperature, precipitation, wind speed and direction, and sunshine duration were $22.39^{\circ}C$, 6.54 mm/day, 3.98 m/s (southwesterly), and 1-11.7 h, respectively. Our results suggest that HAB events in the Yeosu area can be triggered and extended by heavy precipitation and massive movement of HAB from the East China Sea. Satellite images data from July to October 2002-2006 showed that the OC4 algorithm generally estimated high chlorophyll-a concentration ($2-20\;mg/m^3$) throughout the coastal area, whereas the RCA estimated concentrations at $2-10\;mg/m^3$. The surface velocity of chlorophyll-a movement from sequential satellite images revealed the same patterns in the direction of the Tsushima Warm Current.

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula (최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화)

  • Kim, Hyo Jeong;Kim, Da Bin;Jeong, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.264-277
    • /
    • 2021
  • This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.

A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong (겨울철 대관령지역 지형성 구름에 대한 지상기반 구름씨뿌리기 영향 사례연구)

  • Yang, Ha-Young;Chae, Sanghee;Jeong, Jin-Yim;Seo, Seong-Kyu;Park, Young-San;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.301-314
    • /
    • 2015
  • The purpose of this study was to investigate the impact of ground-based glaciogenic seeding on orographic clouds in the Daegwallyeong area on 13 March, 2013. The experiments was conducted by releasing silver iodide (AgI) under following conditions: surface temperature below $-4^{\circ}C$, wind direction between 45 and $130^{\circ}$, and wind speed less than $5ms^{-1}$. Two seeding rates, $38gh^{-1}$ (SR1) and $113gh^{-1}$ (SR2), were tested to obtain an appropriate AgI ratio for snowfall enhancement in the Daegwallyeong area. Numerical simulations were carried out by using the WRF (Weather Research and Forecast) model with AgI point-source module which predicted dispersion fields of AgI particles. The results indicated that the target orographic clouds contained adequate amount of supercooled liquid water and that the dispersion of AgI particles tended to move along the prevailing wind direction. To validate the seeding effects, the observation data from FM-120 and MPS as well as PARSIVEL disdrometer were analyzed. In this case study, glaciogenic seeding significantly increased the concentration of small ice particles below 1 mm in diameter. The observation results suggest that SR1 seeding be reasonable to use the ground-based seeding in the Daegwallyeong area.

A Pre-Feasibility Test of Introducing Renewable Energy Hybrid Systems -Case Studies for 3 Off-Grid Islands- (도서지역 신·재생복합 전력시스템 보급 타당성 분석 -3개 도서지역 분석결과-)

  • Jang, HaNa;Kim, Suduk
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.693-712
    • /
    • 2006
  • A pre-feasibility test is done for renewable energy hybrid power systems at off~grid islands in which the current power supply is provided only by diesel generation. We apply Homer (Hybrid Optimization Model for Electric Renewables) which was developed by the National Renewable Energy Laboratory (NREL) for the analysis to identify the cost-minimizing combination of power generating facilities for the given load profiles. Chuja-Do, Geomun-Do and Youngsan-Do have been selected for our analysis considering the wind resources data of the Korea Institute of Energy Research (KIER). Information on wind speed, solar radiation and temperature is also used for the analysis. System component cost information from overseas market has been used due to the lack of domestic information. Site specific Load profile for electricity demand for those islands are reconstructed based on the partial survey results obtained form other sources. The LCOE of the least cost hybrid power systems for Chuja-Do, Geomun-Do and Youngsan-Do are $0.278/kWh, $0.234/kWh and $0.353/kWh, respectively Considering the fact that diesel generation is being subsidized at the price of $0.300/kWh by the government, first 2 cases are economically feasible for the introduction of renewable energy hybrid systems to those islands. But the third case of Youngsan-Do does not meet the criteria. The basic differences of these pre-feasibility test results are from the differences of the site specific renewable energy conditions, especially wind resources. In summary, promoting hybrid systems in the off-grid remote island should be based on the economic feasibility test results. Not all the off-grid islands are feasible for introducing this renewable energy hybrid system.

  • PDF

Air-conditioning and Heating Time Prediction Based on Artificial Neural Network and Its Application in IoT System (냉난방 시간을 예측하는 인공신경망의 구축 및 IoT 시스템에서의 활용)

  • Kim, Jun-soo;Lee, Ju-ik;Kim, Dongho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.347-350
    • /
    • 2018
  • In order for an IoT system to automatically make the house temperature pleasant for the user, the system needs to predict the optimal start-up time of air-conditioner or heater to get to the temperature that the user has set. Predicting the optimal start-up time is important because it prevents extra fee from the unnecessary operation of the air-conditioner and heater. This paper introduces an ANN(Artificial Neural Network) and an IoT system that predicts the cooling and heating time in households using air-conditioner and heater. Many variables such as house structure, house size, and external weather condition affect the cooling and heating. Out of the many variables, measurable variables such as house temperature, house humidity, outdoor temperature, outdoor humidity, wind speed, wind direction, and wind chill was used to create training data for constructing the model. After constructing the ANN model, an IoT system that uses the model was developed. The IoT system comprises of a main system powered by Raspberry Pi 3 and a mobile application powered by Android. The mobile's GPS sensor and an developed feature used to predict user's return.

  • PDF

Effects of Meteorological and Reclaiming Conditions on the Reduction of Suspended Particles (기상 조건과 매립 조건이 비산 먼지 발생에 미치는 영향)

  • Choi, Jae-Won;Lee, Young-Su;Kim, Jae-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1423-1436
    • /
    • 2010
  • The effects of meteorological and reclaiming conditions on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the k-$\varepsilon$ turbulence closure scheme based on the renormalization group (RNG) theory. Twelve numerical experiments with different meteorological and reclaiming conditions are performed. For identifying the meteorological characteristics of the target area and providing the inflow conditions of the CFD model, the observed data from the automatic weather station (AWS) near the target area is analyzed. Complicated flow patterns such as flow distortion, horse-shoe vortex, recirculation zone, and channeling flow appeared due to the topography and buildings in the domain. Specially, the flow characteristics around the reclamation area are affected by the reclaiming height, reclaiming size and windbreak height. Reclaiming height affected the wind speed above the reclaiming area. Windbreak induces more complicated flow patterns around the reclaiming area as well as within the reclaiming area. In front of the windbreak, flow is distorted as it impinges on the windbreak. As a result, upward flow is generated there. Behind the windbreak, a secondary circulation, so called, a recirculation zone is generated and flow is reattached at the end of the recirculation zone (reattachment point). At the lower part of the recirculation zone, there is a reverse flow toward the windbreak. Flow passing to the reattachment point starts to be recovered. Total amounts of suspended particles are calculated using the frictional and threshold frictional velocities, erosion potential function, and the number of surface disturbance. In the case of a 10 m-reclaiming and northerly wind, the amount of suspended particles is largest. In the presence of 5 m windbreak, the friction velocity above the reclaiming area is largely reduced. As a result, the total amount of the suspended particles largely decreases, compared to the case with the same reclaiming and meteorological conditions except for the windbreak The calculated suspended particle amounts are used as the emission rate of the dispersion model simulations and the dispersion characteristics of the suspended particles are analyzed.