• Title/Summary/Keyword: Wind Separator

Search Result 10, Processing Time 0.041 seconds

The Effects of Operational Factors On the Performance of Husk Separator (왕겨풍구의 성능(性能)에 영향(影響)을 미치는 작동요인(作動要因)에 관(關)한 연구(硏究))

  • Chang, Hyun Taik;Noh, Sang Ha;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.1
    • /
    • pp.22-33
    • /
    • 1984
  • Husk separator is an indispensable equipment in rice milling plants. However, any basic research on the designing and operating criteria of the husk separator have rarely been conducted in Korea. According to the survey results reported recently, grain loss occurs in the process of rice husk separation at custom rice milling plants in Korea and the performance of husk separator has also not been identified. With this regard this study was conducted with a typical commercial husk separator to investigate the effect of the operational factors such as feed rate, blower speed and opening ratio on the velocity distribution in the air duct and the performance of the separator. The results are summerized as follows: 1. The average wind velocity in the primary air duct increased linearly with the blower rpm and the size of air inlet port in both cases of double type and single type operations. 2. The coefficient of variation in the horizontal wind velocities in the primary air duct was the minimum when the opening ratio was 0.22 ($0.052m^2$ of air inlet port) in both cases of single type and double type operations regardless of the blower speeds used in this test. The average wind velocity at the upper part of air duct was greater by 2-5 m/s than the velocity at the bottom part in double type operation. In case of single type operation, however, the average velocity in the middle part was greater than the upper or bottom part when the opening ratio was greater than 0.74. 3. The relationship between the overall effectiveness of separation(Ed for double type and Es for single type) and the average wind velocity (Va) in the primary air duct was expressed in the following quadratic functions. $$Ed=-190.84+106.18Va-10.052Va^2$$ ($r^2$ = 0.97782) $$Es=-223.76+106.23Va-9.1935Va^2$$ ($r^2$ = 0.97029) The average wind velocity required to obtain the overall effectiveness of separation more than 80% ranged from 4.04 m/sec to 5.84 m/sec in case of double type operation, and from 4.70 m/sec to 6.20 m/sec in case of single type. 4. An optimum wind velocity can be obtained with an increase in the blower speed or the size of air inlet port as presented in Figure 8. There was a tendency that the faster the blower speed, the narrower the control range of the air inlet port. 5. The feed rates (1850kg/hr and 2100kg/hr) adopted in this experiment did not bring about a significant difference in both the overall effectiveness of separation and the power consumption. 6. The energy consumption increased cubically with the blower speed but linearly with the size of the air inlet port. On the basis of the results described in items 1, 3, and 6, it would be more economic to adjust the size of the air inlet port larger with a relatively low blower speed than to adjust the size smaller with a relatively high speed.

  • PDF

Design and Test of an Assembly of Air Intake and Variable Geometry Inertial Separator for a Turboprop Aircraft (터보프롭 항공기용 흡입구 덕트 및 가변형 관성분리기 조립체 설계 및 시험)

  • Kim, Woncheol;Oh, Seonghwan;Lee, Sanghyo;Park, Jonghwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.714-719
    • /
    • 2013
  • A turboprop aircraft for this study is required to operate at icing condition in order that it performs its given mission. So an air intake system of the turboprop aircraft should be designed and verified not only to provide the maximum possible total pressure at engine inlet at normal flight condition, but also to include an inertial separator which protects Foreign Object Debris (FOD) like ice or snow at icing condition from entering into the engine inlet screen which can cause or lead an catastrophic engine failure like engine flame-out or severe damage. So an air intake assembly incorporating a variable geometry inertial separator has been designed and then CFD/structural analysis for the assembly was performed to see its design results. Then 35% scaled model of the air intake assembly was manufactured and wind tunnel test was done. This paper describes the detailed design results for the aerodynamic design, analysis and wind tunnel testing during the development process of the air intake assembly.

Two case studies on structural analysis of transmission towers under downburst

  • Yang, FengLi;Zhang, HongJie
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.685-701
    • /
    • 2016
  • Downbursts are of great harm to transmission lines and many towers can even be destroyed. The downburst wind field model by Chen and Letchford was applied, and the wind loads of two typical transmission towers in inland areas and littoral areas were calculated separately. Spatial finite element models of the transmission towers were established by elastic beam and link elements. The wind loads as well as the dead loads of conductors and insulators were simplified and applied on the suspension points by concentrated form. Structural analysis on two typical transmission towers under normal wind and downburst was completed. The bearing characteristics and the failure modes of the transmission towers under downburst were determined. The failure state of tower members can be judged by the calculated stress ratios. It shows that stress states of the tower members were mainly controlled by 45 degree wind load. For the inland areas with low deign wind velocity, though the structural height is not in the highest wind velocity zone of downburst, the wind load under downburst is much higher than that under normal wind. The main members above the transverse separator of the legs will be firstly destroyed. For the littoral areas with high deign wind velocity, the wind load under downburst is lower than under normal wind. Transmission towers are not controlled by the wind loads from downbursts in design process.

The study of CFD Modelling and numerical analysis for MSW in MBT system (생활폐기물 전처리시스템(MBT)의 동역학적 수치해석 및 모델링에 대한 연구)

  • Lee, Keon joo;Cho, Min tae;Na, Kyung Deok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.77-86
    • /
    • 2010
  • In this study, the model of the indirect wind suction waste sorting machine for characteristics of the screening of waste was studied using computational fluid dynamics and the drag coefficient for the model and the suction wind speed were obtained. The wind separator are developing by installing a cyclone air outlet to the suction blower impeller waste is selective in a way that does not pass the features and characteristics of the inlet pipe of the pressure loss and separation efficiency can have a significant impact on. Using Wind separator for selection of waste in the waste prior research on the aerodynamic properties are essential. For plastic cases, it is reasonable to take the drag coefficient between 0.8 and 1.0, and for cans, compression depending on whether the cans, the drag coefficient is in the range from 0.2 to 0.7. The separation efficiency of waste as change suction speed was the highest efficiency when the suction speed was 25~26 m/s. Shape of the inlet, depending on how the transfer pipe of the duct pressure loss occurs because the inlet velocity changes through the appropriate design standards to allow for continued research is needed.

The Study of the Separation Efficiency of Wind Power Selector Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력 선별기의 선별효율 연구)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • In this study, the separation efficiency of wind power selector (the direction of the air flow of the air to perform gravity separation method) of municipal solid waste which was landfilled was investigated to reduce amount of waste that is designed to increase the recycling rate of wastes for the ANSYS CFX Program's numerical methods with wind through the separator. When a suction device designed to suction 1000mL of a plastic bag, the separation efficiency was 100% and when the wind speed was 0.9 m /sec or more and when the wind speed was 1.6 m / sec or more, the efficiency of plastic bottles in a mixture of 500mL and 1500mL plastic bottle waste was 100% and the aluminum screening efficiency of 250mL aluminum can was 100 % when the wind speed was 2.3 m / sec. In the last, 5mm thick compressed aluminum can efficiency was 90 % when the wind speed was 2.4 m / sec.

Status of Technology development of RDF for municipal wastes in Korea (국내 생활폐기물 RDF 기술개발 동향)

  • Lee, Ha-Baik;Choi, Yeon-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.705-708
    • /
    • 2007
  • RDF means Refuse Derived Fuel, it is made pellets with combustible materials in municipal waste and RDF use a renewable energy instead with natural coal. RDF Technology is a essential one to treat municipal waste steadily and secure a energy source in Korea. Already RDF Technology commercialize in Japan, USA, Europe and there are many of RDF production plants and utilization facilities. The first RDF plant was constructed in Wonju Korea in October 2006 and is good operation. Government accelerate establishment of concerning laws and support to develop technology and spread RDF plants and utilization facilities.

  • PDF

A Study on the Performance Test of Axial-flow Cyclone Separator (축상유입식 사이클론 집진기 성능시험에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.101-106
    • /
    • 2020
  • Along with dust collection efficiency, pressure loss is a very important cyclone operation factor. A severe rise in pressure loss causes the problem of cost. To solve the problem, the method connecting axial-vane type cyclones in parallel is suggested recently. The axial vane type cyclone dust collector applied in this study is a small portable type. Multiple cyclones are installed in a round type. The basic performance test on the axial vane type cyclone dust collector was conducted. As a result, the cut size reduced along with a rise in the wind velocity of the cyclone dust collector inlet. According to the test on dust collection efficiency, the effect of dust collection began to appear in the range of 3㎛ and dust collection efficiency was greatly improved at 5 ㎛. The noise of the cyclone dust collector well met the fan sound power level of KSB 6361.

Aerodynamic Study on Pneumatic Separation of Grains(II) -The Measurement of the Terminal Velocities of Grains- (곡물(穀物)의 공기선별(空氣選別)에 관(關)한 공기동력학적(空氣動力學的) 연구(硏究)(II) -수직풍동(垂直風銅)을 이용(利用)한 곡물(穀物)의 종말속도(終末速度) 측정(測定)-)

  • Lee, C.H.;Cho, Y.J.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 1990
  • Aerodynamic property is the most important factor in designing the pneumatic separator and handling equipment for grains and seeds. Particularly the correct information about the terminal velocities of the corresponding grains and seeds is indispensible. However, a few studies with relation to the terminal velocities of grains and seeds were conducted in this country, even though the terminal velocities of the domestic grains and seeds are required to design those equiments which can be used for the domestic grains and seeds having specific aerodynamic properties. In this study, the terminal velocities for four varieties of varley and six varieties of paddy were investigated by means of two different methods, the suspension method and the drop method in an upward current of air. For measuring the terminal velocities, the vertical wind tunnel which had been examined about the uniform air flow in the previous study was used. In addition, the effect of the size of grains and the moisture content of grain kernel on the terminal velocity was examined. The following conclusions were derived from the study : 1. The different terminal velocities of grains are resulted from the different measuring methods. The terminal velocity measured by the drop method is smaller than that by the suspension method. It is considered that the difference in the terminal velocities is caused by the difference in the projection area of grain which is faced to the air stream. 2. The terminal velocity of grain increases as the size and the moisture content of the kernel increase. 3. The linear regression equations for the terminal velocities of grains were derived in terms of the moisture content of grains by the variety of grains and the measuring method. Also, the linear regression equations for the terminal velocity, based on the weighted size of grains, were derived in terms of the moisture contents of granis.

  • PDF

A Study on the Effects of Semi-Gel Electrolyte in Electricity Storage Battery (Semi-Gel 전해액이 전력저장용 배터리에 미치는 영향에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.193-198
    • /
    • 2012
  • The following results are from the test of semi-gel electrolyte to store energy efficiently and use advanced VRLA batteries by photovoltaic and wind power generation. Semi-Gel electrolyte with Silica 5% became Gel after 1 and half hour. It shows it is the most suitable time that the electrolyte can be absorbed into the separator and active material of plate to be gel. The test also says that semi-gel electrolyte shows the much better performance for low-rate discharge and the liquid electrolyte is good for high-rate discharge because the reaction rate of gel electrolyte is slower than liquid one for high-rate discharge performance. The test with DOD10% and DOD100% says that 5% silica electrolyte shows much better performance for life efficiency than liquid one. Because semi-gel electrolyte increase the efficiency of gas recombination at the chemical reaction of VRLA battery and it makes minimizing the reduction of electrolyte. Using the 5% silica electrolyte in order to improve the stroage efficiency and life performance for photovoltic and wind power generation, it causes improving by 4.8% for DOD100% and 20% for DOD10%.

Sodium Sulfur Battery for Energy Storage System (대용량 에너지 저장시스템을 위한 나트륨 유황전지)

  • Kim, Dul-Sun;Kang, Sungwhan;Kim, Jun-Young;Ahn, Jou-Hyeon;Lee, Chang-Hui;Jung, Keeyoung;Park, Yoon-Cheol;Kim, Goun;Cho, Namung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.111-122
    • /
    • 2013
  • Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.