• Title/Summary/Keyword: Wind Response

Search Result 1,033, Processing Time 0.025 seconds

Study on the Shape of Appendage for the Reduction of Motion of Floating Wind Turbine Platforms (부유식 풍력 하부구조물의 운동 저감을 위한 부가물 형상 연구)

  • Dae-Won Seo;Jaehyeon Ahn;Jungkeun Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1201-1208
    • /
    • 2022
  • In general, to maximize the supply and efficiency of floating offshore wind power generation energy, the motion caused by wave attenuation of the substructure must be reduced. According to previous studies, the motion response was reduced due to the vortex viscosity generated by the damping plate installed in the lower structure among the waves. In this study, a 5 MW semi-submersible OC5 platform and two platforms with attenuation plates were designed, and free decay experiments and numerical calculations were performed to confirm the effect of reducing motion due to vortex viscosity. As a result of the model test, when the heave free decay tests were conducted at drop heights of 30 mm, 40 mm, and 50 mm, compared with the OC5 platform, the platform with two types of damping plates attached had relatively improved motion damping performance. In the model test and numerical calculation results, the damping plate models, KSNU Plate 1 and KSNU Plate 2, were 1.1 times and 1.3 times lower than OC5, respectively, and the KSNU Plate 2 platform showed about two times better damping performance than OC5. This study shows that the area of the damping plate and the vortex viscosity are closely related to the damping rate of the heave motion.

Design of ICT based Protected Horticulture for Recovering Natural Disaster (ICT기반 시설원예 재해 경감장치 설계)

  • Lee, Meong-Hun;Yoe, Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.10
    • /
    • pp.373-382
    • /
    • 2016
  • Under the Agricultural technology is influenced from climate that is requisite of seasonal. So this system will cover the problems and develop the agricultural industry as well. So far, the agricultural industry is developing however, it has the points of the weakness because of natural disasters such as wind risk and heavy snow. This paper designs system to change vinyl on the greenhouse. This is a preliminary study for the real-time feedback control of greenhouse. The study developed a wireless IoT sensor system based on authentic technology capacities, to integrate with the protected horticulture Management System. These system was used to evaluate the levels of the snow cover and wind through IoT devices. The existing greenhouse uses the warm water to clear snow or to change methods. This system will recover by changing the vinyl which is covered outside of the greenhouse. The points of the system is changing vinyl to spin pipe. It is contained extra vinyl. The effects of this system are minimized labor protected crops from natural disasters. For this purpose, the study first developed a wireless IoT sensor unit that integrates an MEMS device and wireless communication module. Also, the study developed an operating program that enables real-time response measurement. It will help operational and maintenance greenhouse as a result.

Underwater Channel Analysis and Transmission Method Research via Coded OFDM (수중채널 분석과 Coded OFDM을 통한 전송방법 연구)

  • Jeon, Hyeong-Won;Lee, Su-Je;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.573-581
    • /
    • 2011
  • The underwater channel is known to offer poor communications channel. The channel medium is highly absorptive and the transmission bandwidth is limited. In addition, the channel is highly frequency selective; the degree of selectiveness depends on a detailed geometry of the channel. Furthermore, the response changes over time as the channel conditions affecting the response such as water temperature, sea surface wind and salinity are time-varying. The transceiver design to deal with the frequency and time selective channel, therefore, becomes very challenging. It has been known that deep fading at certain specific sub-carriers are detrimental to OFDM systems. To mitigate this negative effect, the proposed coded OFDM system employs an LDPC code based modulation. In this paper, we aim 1) to provide a detailed underwater channel model; 2) to design a robust LDPC coded OFDM system; 3) to test the proposed system under a variety of channel conditions enabled by the channel model.

Seasonal Variation of Planktonic Foraminifera Assemblage in response to Seasonal Shift of Inter-Tropical Convergence Zone in the Northeastern Equatorial Pacific (적도수렴대의 위치변화에 따른 북동태평양 적도해역의 부유성 유공충 군집의 계절변동)

  • Lee, Yuri;Asahi, Hirofumi;Woo, Han Jun;Kim, Hyung Jeek;Lee, Seong-Joo;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.437-445
    • /
    • 2014
  • A time-series sediment trap was operated at a water depth of 4950 m from July 2003 to May 2004 at KOMO station ($10^{\circ}30^{\prime}N$, $131^{\circ}20^{\prime}W$) in the northeastern equatorial Pacific, with the aim of understanding the temporal variation of planktonic foraminifera assemblages in response to the seasonal shift of Inter-Tropical Convergence Zone (ITCZ). A total of 22130 planktonic foraminifera specimens belonging to 30 species and 11 genera were identified, which shows a distinct seasonal variation with high values (125~288 specimens $m^{-2}day^{-1}$) in the winter to spring (December-May) and low values (16~23 specimens $m^{-2}day^{-1}$) in the fall (September-November). In addition, seasonal ecological differences of foraminifera assemblages are distinctly recognizable: omnivorous foraminifera occurred predominantly during the summer season, whereas herbivorous ones were dominant during the winter season. Such seasonal variations correspond to the seasonal shift of the ITCZ. Enhanced occurrence of herbivorous species during the winter-spring season seems a result of surface water mixing generated by the southward shift of the ITCZ. The increase in omnivorous species during the summer season may be due to the northward movement of the ITCZ caused by weakened wind speed, resulting in the intensification of water column stratification and nutrient-poor environment. A significant reduction of planktonic foraminifera specimens during the fall is attributed to heavy precipitation and reduction in light intensity.

Power Estimation and Optimum Design of a Buoy for the Resonant Type Wave Energy Converter Using Approximation Scheme (근사기법을 활용한 공진형 파력발전 부이의 발전량 추정 및 최적설계)

  • Koh, Hyeok-Jun;Ruy, Won-Sun;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • This paper deals with the resonant type of a WEC (wave energy converter) and the determination method of its geometric parameters which were obtained to construct the robust and optimal structure, respectively. In detail, the optimization problem is formulated with the constraints composed of the response surfaces which stand for the resonance period(heave, pitch) and the meta center height of the buoy. Use of a signal-to-noise ratio calculated from normalized multi-objective results with the weight factor can help to select the robust design level. In order to get the sample data set, the motion responses of the power buoy were analyzed using the BEM (boundary element method)-based commercial code. Also, the optimization result is compared with a robust design for a feasibility study. Finally, the power efficiency of the WEC with the optimum design variables is estimated as the captured wave ratio resulting from absorbed power which mainly related to PTO (power take off) damping. It could be said that the resultant of the WEC design is the economical optimal design which satisfy the given constraints.

On the Evaluation of the dynamic Safety of the Ship's Cargo at Sea (항해중 선박 적재화물의 동적 안정성 평가에 관한 연구)

  • 김철승;김순갑
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • One of the most important missons that are imposed on merchant ship at sea is to accomplish the safe transportation of cargo loaded. Recently, a study on the seakeeping performance has been carried out on the development of evaluation system related to the synthetic safety of a ship at sea. The seakeeping performance is the ship's ability sailing at, and executing its misson against adverse environmental factors successfully and safely. Until now, however, there has not been any method of quantitative evaluation on the dynamic safety of the ship's cargo loaded. In this regards, this paper has introduced the evaluation method of dynamic safety of the ship's cargo. In order to evaluate the dynamic safety of cargo, the vertical and lateral acceleration which causes the collapse, racking and local structure failure of cargo was adopted as the evaluation factors in the ship's motions. The response amplitude of ship's motions in regular waves is manipulated by NSM (New Strip Method) on a given 2,700 TEU full container vessel under the wind forces of 7, 8 and 9 Beaufort scale. Each response of ship's motions induced by NSM was applied to short-crested irregular waves for stochastic process on evaluation factors and then vertical and lateral acceleration of each cargo was compared with significant amplitude of each acceleration. A representative dangerous factor was determined by comparing permissible values of stacking and racking forces occurred typically to the vertical and transverse directions with the container strength required on ISO 1496 at the positions of forecastle, poop and ship's midship respectively. Through the occurrence probability of the determined factor by Rayleigh's probability density function, the dangerousness which limits loads on container's side wall as an evaluation was applied in judging of the danger of the ship's cargo loaded.

  • PDF

Detecting Chaotic Motions of a Piecewise-Linear System in the Noisy Fields by Mean Poincare Maps (평균 포인케어맵을 이용한 Noisy Field에서의 chaos거동의 검출방법)

  • 마호성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.239-249
    • /
    • 1997
  • The method to distinguish chaotic attractors in the perturbed response behaviors of a piecewise-linear system under combined regular and external randomness is provided and examined. In the noisy fields such as the ocean environment, excitation forces induced by wind, waves and currents contain a finite degree of randomness. Under external random perturbations, the system responses are disturbed, and consequently chaotic signatures in the response attractors are not distinguishable, but rather look just random-like. Mean Poincare map can be utilized to identify such chaotic responses veiled due to the random noise by averaging the noise effect out of the perturbed responses. In this study, the procedure to create mean Poincare map combined with the direct numerical simulations is provided and examined. It is found that mean Poincare maps can successfully distinguish chaotic attractors under stochastic excitations, and also can give the information of limit value of noise intensity with which the chaos signature in system responses vanishes.

  • PDF

Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model

  • Zhang, Jing;Au, Francis T.K.;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.157-173
    • /
    • 2020
  • In the finite element modelling of long-span cable-stayed bridges, there are a lot of uncertainties brought about by the complex structural configuration, material behaviour, boundary conditions, structural connections, etc. In order to reduce the discrepancies between the theoretical finite element model and the actual static and dynamic behaviour, updating is indispensable after establishment of the finite element model to provide a reliable baseline version for further analysis. Traditional sensitivity-based updating methods cannot support updating based on static and dynamic measurement data at the same time. The finite element model is required in every optimization iteration which limits the efficiency greatly. A convenient but accurate Kriging surrogate model for updating of the finite element model of cable-stayed bridge is proposed. First, a simple cable-stayed bridge is used to verify the method and the updating results of Kriging model are compared with those using the response surface model. Results show that Kriging model has higher accuracy than the response surface model. Then the method is utilized to update the model of a long-span cable-stayed bridge in Hong Kong. The natural frequencies are extracted using various methods from the ambient data collected by the Wind and Structural Health Monitoring System installed on the bridge. The maximum deflection records at two specific locations in the load test form the updating objective function. Finally, the fatigue lives of the structure at two cross sections are calculated with the finite element models before and after updating considering the mean stress effect. Results are compared with those calculated from the strain gauge data for verification.

Response of Crop Water Stress Index (CWSI) and Canopy Temperature of Apple Tree to Irrigation Treatment Schemes (관개수준별 사과나무의 엽온 및 수분 스트레스 지수 변화 분석)

  • Kim, Minyoung;Choi, Yonghun;Cho, Junggun;Yun, Seokkyu;Park, Jeonghun;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.23-31
    • /
    • 2019
  • Crop response to weather and internal water pressure changes is more sensitive to crop water stress than soil water content. Recently, its implementation to optimal irrigation scheduling has been receiving much attention. This study was conducted to determine and compare the theoretical crop water stress index (CWSI) using meterological data and canopy temperature collected from three different irrigation treatments, which were Tr-1 plot (rainfed), Tr-2 plot (50% of daily evapotranspiration (ET) irrigated) and Tr-3 plot (75% of daily evapotranspiration (ET) irrigated). The readings of canopy temperature and CWSI were significantly different among irrigation treatment schemes. The average canopy temperatures and CWSIs of Tr-1 and Tr-3 plots were $34.6^{\circ}C$ and $32.6^{\circ}C$, 0.79 and 0.64, respectively. Solar radiation had the biggest correlation with CWSI (R=0.68) which was followed by wind speed, relative humidity and air temperature. Overall, the findings of this study indicated that canopy temperatures and CWSIs could be further used for irrigation scheduling for crop growth.

Applying Least Mean Square Method to Improve Performance of PV MPPT Algorithm

  • Poudel, Prasis;Bae, Sang-Hyun;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.15 no.3
    • /
    • pp.99-110
    • /
    • 2022
  • Solar photovoltaic (PV) system shows a non-linear current (I) -voltage (V) characteristics, which depends on the surrounding environment factors, such as irradiance, temperature, and the wind. Solar PV system, with current (I) - voltage (V) and power (P) - Voltage (V) characteristics, specifies a unique operating point at where the possible maximum power point (MPP) is delivered. At the MPP, the PV array operates at maximum power efficiency. In order to continuously harvest maximum power at any point of time from solar PV modules, a good MPPT algorithms need to be employed. Currently, due to its simplicity and easy implementation, Perturb and Observe (P&O) algorithms are the most commonly used MPPT control method in the PV systems but it has a drawback at suddenly varying environment situations, due to constant step size. In this paper, to overcome the difficulties of the fast changing environment and suddenly changing the power of PV array due to constant step size in the P&O algorithm, least mean Square (LMS) methods is proposed together with P&O MPPT algorithm which is superior to traditional P&O MPPT. PV output power is predicted using LMS method to improve the tracking speed and deduce the possibility of misjudgment of increasing and decreasing the PV output. Simulation results shows that the proposed MPPT technique can track the MPP accurately as well as its dynamic response is very fast in response to the change of environmental parameters in comparison with the conventional P&O MPPT algorithm, and improves system performance.