Browse > Article
http://dx.doi.org/10.5389/KSAE.2019.61.5.023

Response of Crop Water Stress Index (CWSI) and Canopy Temperature of Apple Tree to Irrigation Treatment Schemes  

Kim, Minyoung (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Choi, Yonghun (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Cho, Junggun (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Sciences (NIHHS), Rural Development Administration (RDA))
Yun, Seokkyu (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Sciences (NIHHS), Rural Development Administration (RDA))
Park, Jeonghun (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Kim, Youngjin (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Jeon, Jonggil (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Lee, Sangbong (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.61, no.5, 2019 , pp. 23-31 More about this Journal
Abstract
Crop response to weather and internal water pressure changes is more sensitive to crop water stress than soil water content. Recently, its implementation to optimal irrigation scheduling has been receiving much attention. This study was conducted to determine and compare the theoretical crop water stress index (CWSI) using meterological data and canopy temperature collected from three different irrigation treatments, which were Tr-1 plot (rainfed), Tr-2 plot (50% of daily evapotranspiration (ET) irrigated) and Tr-3 plot (75% of daily evapotranspiration (ET) irrigated). The readings of canopy temperature and CWSI were significantly different among irrigation treatment schemes. The average canopy temperatures and CWSIs of Tr-1 and Tr-3 plots were $34.6^{\circ}C$ and $32.6^{\circ}C$, 0.79 and 0.64, respectively. Solar radiation had the biggest correlation with CWSI (R=0.68) which was followed by wind speed, relative humidity and air temperature. Overall, the findings of this study indicated that canopy temperatures and CWSIs could be further used for irrigation scheduling for crop growth.
Keywords
Irrigation treatments; canopy temperature; crop water stress index (CWSI);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 O'Shaughnessy, S., S. R. Evett, P. D. Colaizzi, and T. A. Howell, 2012. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural Water Management 107: 122-132. doi:10.1016j.agwat.2012.01.018.   DOI
2 Osroosh, Y., R. T. Peters, C. S. Campbell, and Q. Zhang, 2015. Automatic irrigation scheduling of apple trees using theoretical crop water stress index with an innovative dynamic threshold. Computers and Electronics in Agriculture 118: 193-203. doi:10.1016/j.compag.2015.09.006.   DOI
3 O'Toole J. C., and J. L. Hatfield, 1983. Effect of wind on the crop water stress index derived by infrared thermometry. Agronomy Journal 75: 811-817. doi:10.2134/agronj1983.00021962007500050019x.   DOI
4 Rural development administration (RDA), 2016. Agricultural technical note-Apple cultivation. 144-145, Jeonju, Korea. (in Korean).
5 Scholander, P. F., H. T. Hammel, E. D. Bradstreet, and E. A. Hemmingsen, 1965. Sap pressure in vascular plants. Science 148(3668): 339-346. doi:10.1126/science.148.3668.339.   DOI
6 Song, E. Y., and J. H. Lee, 2012. Plant responses to environmental stresses. Nanotechnology in Biomedical Science 32(4): 27-34 (in Korean).
7 Woo, Y. H., 2013. Moisture and measuring and control in soil and plant. https://www.af.ac.kr/planweb/board/download.9is?fileUid=0000000052e385d90152ed26d5432e9e&boardUid=816ac6da51a3db470151b3d169a5019b.
8 Zarco-Tejada, P. J., V. Gonzalez-Dugo, and J.A.J. Berni, 2012. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote sensing of Environment 117: 322-337. doi:10.1016/j.rse.2011.10.007.   DOI
9 Amatya, S., M. Karkee, A. K. Alva, and B. Adhikari, 2012. Hyperspectral imaging for detecting water sterss in potatoes. American Society of Agricultural and Biological Engineers 2012 Annual Meeting, Dallas, Texas. 29. July-1. August, 2012. doi:10.13031/2013.42218.   DOI
10 Bellvert, J., J. Marsal, J. Birona, V. Gonzalez-Dugo, E. Fereres, S. L. Ustin, and P. J. Zarco-Tejada, 2016. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and saturn peach orchards. Remote Sensing 8(1): 39-56. doi:10.3390/rs8010039.   DOI
11 Bohnert, H. J., Q. Gong, P. Li, and S. Ma, 2006. Unraveling abiotic stress tolerance mechanisms-Getting genomics going. Current Opinion in Plant Biology 9(2): 180-188. doi:10.1016/j.pbi.2006.01.003.   DOI
12 Calera, A., I. Campos, A. Osann, G. D'Urso, and M. Menenti, 2017. Remote sensing for crop water management: From ET modeling to services for the end users. Sensors 17(5): 1104-1129. doi:10.3390/s17051104.   DOI
13 Choi, Y. M., S. M. Jung, and D. G. Choi, 2017 Effects of heavy rain during rainy season and drainage methods on soil water content, photosynthesis characteristics, and growth in 'jinok' and 'campbell early' grapes. Korean Journal of Agricultural and Forest Meteorology 19(1): 1-9 (in Korean). doi:10.5532/KJAFM.2017.19.1.1.   DOI
14 Doorenbos, J., and W. O. Pruitt, 1977. Crop Water Requirements, FAO Irrigation and Drainage Paper 24, Rome, Italy. p15-29.
15 Dresselhaus, T., and R. Huckelhoven, 2018. Biotic and abiotic stress responses in crop plants. Agronomy 8(11):267-272. doi:10.3390/agronomy8110267.   DOI
16 Erdem, Y., S. Sehirali, T. Erdem, and D. Kenar, 2006. Determination of crop water stress index for irrigation scheduling of bean (Phaseolus vulgaris L.). Turkish Journal of Agricultural and Forestry 30(3): 195-202.
17 Erdem, Y., L. Arin, T. Erdem, S. Polat, M. Deveci, H. Okursoy, and H.T. Gultas, 2010. Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agricultural Water Mangement 98(1): 148-156. doi:10.1016/j.agwat.2010.08.013.   DOI
18 Agam, N., Y. Cohen, J.A.J. Berni, V. Alchanatis, D. Kool, A. Dag, U. Yermiyahu, and A. Ben-Gal, 2013. An insight to the performance of crop water stress index for olive trees. Agricultural Water Management 118: 79-86. doi:10.1016/j.agwat.2012.12.004.   DOI
19 Aguilar, J., D. Rogers, and I. Kisekka, 2015. Irrigation scheduling based on soil moisture sensors and evapotranspiration. Kansas Agricultural Experiment Station Research Reports 1(5): 1-6. doi:10.4148/2378-5977.1087.   DOI
20 Garcia y, A. G., M. A. Abritta, C.M.T. Soler, and A. Green, 2014. Water and heat stress: The effect on the growth and yield of maize and the impacts on irrgiation water. WIT Transactions on Ecology and The Environment 185: 77-87. doi:10.2495/SI140081.   DOI
21 Guisard, Y., 2008. Crop canopy temperature as indicator of water stress: application to grapevines. Doctoral thesis, Charles Sturt University, Australia.
22 Idso, S. B., R. D. Jackson, P. J. Pinter, R. J. Reginato, and J. L. Hatfield, 1981. Normalizing the stress-degreeday parameter for environmental variability. Agricultural Meteorology 24: 45-55. doi:10.1016/0002-1571(81)90032-7.   DOI
23 Ihuoma, S. O., and C. A. Madramootoo, 2017. Recent advances in crop water stress detection. Computers and Electronics in Agriculture 141: 267-275. doi:10.1016/J.compag.2017.07.026   DOI
24 Kim, M., S. Kim, Y. Kim, Y. Choi, and M. Seo, 2015. Infrared estimation of canopy temperature as crop water stress indicator. Korean Journal of Soil Science and Fertilizer 48(5): 499-504. doi:10.7745/KJSSF.2015.48.5.499.   DOI
25 Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter Jr., 1981. Canopy temperature as a crop water stress indicator. Water Resources Research 17(4): 1133-1138. doi:10.1029/WR017i004p01133.   DOI
26 Jones, H. G., 2004. Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Advances in Botanical Research 41: 107-163. doi:10.1016/S0065-2296(04)41003-9.   DOI
27 Jones, H. G., 2010. Remote detection of crop water stress and distinguishing it from other stresses. XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 922, 23-34. doi:10.17660/ActaHortic.2011.922.2.   DOI
28 Kim, S. W., and S. J. Kim, 1988. Study on the estimation of project duty of water and facility capacity in upland irrigation - on the estimation of duty of water for the upland crops by the measurement of evapotranspiration. Journal of the Korean Society of Agricultural Engineers 30(4): 23-44 (in Korean).
29 Limpus, S., 2009. Isotropic and anisotropic characterisation of vegetable crops. Department on Primary Industries and fisheries, Queensland.
30 Nam, S. W., Y. S., Kim, and D. U., Seo, 2014. Change in the plant temperature of tomato by fogging and airflow in plastic greenhouse. Protected Horticulture and Plant Factory 23(1): 11-18 (in Korean). doi:10.12791/KSBEC.2014.23.1.011.   DOI
31 McCann, I. R., J. C. Stark, and B. A. King, 1992. Evaluation and interpretation of the crop water stress index for well-watered potatoes. American Potato Journal 69:831-841. doi:10.1007/BF02854191.   DOI