• Title/Summary/Keyword: Wind Pressure Safety

Search Result 128, Processing Time 0.024 seconds

The Cause of Abnormal Tidal Residuals Along the Coast of the Yellow Sea in November 2013 (황해연안의 2013년 11월 이상조위편차 발생 원인)

  • Kim, Ho-Kyun;Kim, Young Taeg;Lee, Dong Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.4
    • /
    • pp.344-353
    • /
    • 2016
  • The cause of abnormal tidal residuals was examined by analyzing sea levels, sea surface atmospheric pressures, winds at ten tide stations, and current, measured at the coast of the Yellow Sea from the night of November $24^{th}$ to the morning of the $25^{th}$ in 2013, along with weather chart. Additionally, the cross-correlations among the measured data were also examined. The 'abnormal tidal residuals' mentioned in this study refer to differences between maximum and minium tidal residuals. The largest abnormal tidal residual was identified to be a difference of 176 cm occurring over 4 hours and 1 minute at YeongJongDo (YJD) with a maximum tidal residual of 111 cm and minimum of -65 cm. The smallest abnormal tidal residual was 68 cm at MoSeulPo (MSP) during 8 hours 52 minutes. The cause of these abnormal tidal residuals was not a meteo-tsunami generated by an atmospheric pressure jump but wind generated by the pressure patterns. The flow speed due to these abnormal tidal residuals as measured at ten tide stations was not negligible, representing 16 ~ 41 % of the annual average ebb current speed. From the cross correlation among the tidal residuals, winds, and tidal residual currents, we learned the northern flow, due to southerly winds, raised the sea level at Incheon when a low pressure center located on the left side of the Korean Peninsula. After passing the Korean Peninsula, a southern flow due to northerly winds decreased the sea level.

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

Seismic and Stress Analysis of 72.5kV GIS for Technical Specification of KEPCO (72.5kV GIS 전력 장비의 KEPCO 기준 내진 및 응력 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, So-Ul;Bang, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.

The Foul Smelling from Sewer Pipe near Large Apartment Complexes and its Countermeasures I: Characteristics of the Foul-Smelling Sewer Pipe in Residential Areas (대규모 아파트 단지주변 하수관로의 악취 발생과 대책 1: 주거지역 하수관로의 악취 발생 특성)

  • Lee, Jang-Hown;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.621-629
    • /
    • 2007
  • This study intends to investigate the characteristics of the foul smell of sewer pipes near large apartment complexes as complaints about offensive odors have drastically increased in urban residential areas. Targeting apartments where people actually complained about foul orders, the study result revealed that components in the smell of the water-purifier tank of the target apartment were very similar to those of sewage treatment plants and night soil treatment plants. Measuring components of odors inside the management layer of tank showed that the concentration of hydrogen sulfide was 10ppm, which is approximately 160 times the safety standard of 0.06ppm; the concentration of mercaptan was 0.9ppm, which is about 220 times the safety standard of 0.004ppm. The source materials of foul odors were discharged outside through ducts, and those households living near outlets producing bad smell complain that it gets worse depending on the air pressure or wind direction and strength, and they could not even open windows. As well, these source materials were transferred by discharge pumps to public sewer pipes outside the apartment complex. While discharge pumps starts operating, they remain on the sewer pipe and then begin to spread over to roads through small openings of manholes on the road. Then, the smell offends passers-by and residents near the road, leading to a lot of complaints. The study results suggest that, among the sources of foul odors in sewer pipes of residential areas, especially those from the water-purifier tank of large apartments, hydrogen sulfide should be the main target for follow-up treatment.

Development and Performance Evaluation of Under Cut Anchor Stone Curtain Wall Construction Method (언더컷 앵커 방식의 석재 커튼월 공법 개발 및 성능평가)

  • Chang, Kug-Kwan;Park, Nam-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.138-146
    • /
    • 2014
  • Structural safety as well as variety and aesthetics of building facade are currently gathering more attention in building construction and stone curtain wall is widely used in exterior wall. However, two main problems are existed in curtain wall construction method. One is an uniformity of construction quality and the other is a repair work of stone panels. Also, the noise and vibration occurring in construction may be cause of civil complaint. Therefore, a new method is needed to overcome these problems. This paper presents a new stone curtain wall system using under cut anchor and secondary holes that was developed in this study. Additionally, structural performance evaluation was conducted to verify the constructability and structural safety for wind pressure and seismic load. Through the evaluation of this method, improved constructability and economic efficiency were verified.

Ocean wave forecasting and hindercasting method to support for navigational safety of ship (선박의 항행안전지원을 위한 파낭추산에 관한 연구)

  • 신승호;교본전명
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.147-156
    • /
    • 2003
  • In order to improve navigational safety of ships, on ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface winds first and then carried out ocean wave hindercasting simulations according to the routes of the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed low pressure system in Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, was period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

  • PDF

Development of a Work Environment Monitoring System for Improving HSE and Production Information Management Within a Shipyard Based on Wireless Communication (무선 통신 기반 조선소 내 HSE 및 생산정보 관리 향상을 위한 작업환경 모니터링 시스템 개발)

  • Chunsik Shim;Jaeseon Yum;Kangho Kim;Daseul Jeong;Hwanseok Gim;Donggeon Kim;Donghyun Lee;Yerin Cho;Byeonghwa Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.367-374
    • /
    • 2023
  • As the Fourth Industrial Revolution accelerating, countries worldwide are developing technologies to digitize and automate various industrial sectors. Building smart factories not only reduces costs through improved process productivity but also allows for preemptive identification and removal of risk factors through the practice of Health, Safety, and Environment (HSE) management, thereby reducing industrial accident risks. In this study, we visualized pressure, temperature, power, and wind speed data measured in real-time via a monitoring GUI, enabling field managers and workers to easily access related information. Through the work environment monitoring system developed in this study, it is possible to conduct economic analysis on per-unit basis, based on the digitization of production management elements and the tracking of required resources. By implementing HSE in shipyards, potential risk factors can be improved, and gas and electrical leaks can be identified, which are expected to reduce production costs.

Snowfall and Ocean Conditions Characteristic in the West Sea of Korea in Winter (동계 서해의 해황과 적설 특성)

  • Go, Woo-Jin;Kim, Sang-Woo;Jang, Lee-Hyun;Choi, Yong-Kyu;Yang, Joon-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.185-189
    • /
    • 2008
  • This study was conducted to find out the effects of relationship between ocean conditions and snowfall when cold and dry continental air mass passes through the West Sea of Korea. Route of continental high atmospheric pressure can cause effect on snowfall at the west regions (Inchoen, Gunsan, Mokpo) of the Korean Peninsula. The continental high atmospheric pressure extend from the southern China to western coastal region of the Korean Peninsula during the December, and it extend from the north side of China through Bohai Sea and Yodong Peninsula to central area of the Korean Peninsula during the February. Therefore, more snowfall recorded in Incheon is higher during Feb. than Dec.. whereas Gunsan and Mokpo is the opposite. The heavy snowfall at the western coastal region of Korea was caused by loss of the heat from the ocean to air when it's higher than $100W/m^2$. the heavy snowfall was also observed when the arrangement of continental high atmospheric pressure and low pressure was high at the West and low at the East, which formed a front in West and when the wind blow from the North or North West at the speed of $4\sim8m/sec$. There were not much relation between salinity in the western sea and snowfall in the western coastal region of Korea.

  • PDF

Relationship between Ocean-Meteorological Factors and Snowfall in the Western Coastal Region of Korea in Winter (동계 한국 서부연안지역의 적설과 해양기상요소와의 관계)

  • Go, Woo-Jin;Kim, Sang-Woo;Jang, Lee-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • This study was conducted to find out the effects of relationship between ocean-meteorological factors and snowfall at Incheon, Gunsan and Mokpo when cold and dry continental air mass passed through the West Sea of Korea in winter. Mean snowfall from December to February showed the order of Gunsan (12.7 cm), Mokpo (9.0 cm) and Incheon (7.8 cm). In particular, the snowfall in the three regions showed the regional difference in December and February. It was well consistent with the extension of continental high. Extension of continental high can cause effect on snowfall at the west regions (Inchoen, Gunsan, Mokpo) of the Korean Peninsula. The continental high extended from the southern China to western coastal region of the Korean Peninsula in December, it extended from the northern China to central area of the Korean Peninsula in January. It also extended from the north side of China through Bohai Sea and Yodong Peninsula to central area of the Korean Peninsula in February. Therefore, more snowfall recorded in Incheon is higher in February than December whereas Gunsan and Mokpo is the opposite. The heavy snowfall at the three regions was caused by loss of the heat from the ocean to air when the heat loss was higher than 100 $W/m^2$. The heavy snowfall was also observed when the arrangement of continental high atmospheric pressure and low pressure was high at the west and low at the east, which formed a front in West and when the wind blow from the North or North West at the speed of 4${\sim}$8 m/sec.

  • PDF

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.