• Title/Summary/Keyword: Wind Induction Generator

Search Result 225, Processing Time 0.041 seconds

Grid-Connected Variable Speed Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 계통연계형 가변속 풍력발전시스템)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.397-404
    • /
    • 2004
  • This paper proposes a variable speed control scheme of grid-connected wind power generation systems using cage-type induction generators. The induction generator is operated in indirect vector control mode, where the d-axis current controls the excitation level and the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed In order to produce the maximum output power. The generated power flows into the utility grid through the back-to-back PWM converter. The line-side converter controls the dc link voltage by the q-axis current control and can control the line-side power factor by the d-axis current control. Experimental results are shown to verify the validity of the proposed scheme.

Operation Scheme for a Wind Farm to Mitigate Output Power Variation

  • Lee, Sung-Eun;Won, Dong-Jun;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.869-875
    • /
    • 2012
  • Because of the nature of wind, the output power of wind turbines fluctuates according to wind speed variation. Therefore, many countries have set up wind-turbine interconnection standards usually named as Grid-Code to regulate the output power of wind farms to improve power system reliability and power quality. This paper proposes three operation modes of wind farms such as maximum power point tracking (MPPT) mode, single wind turbine control mode and wind farm control mode to control the output power of wind turbines as well as overall wind farms. This paper also proposes an operation scheme of wind farm to alleviate power fluctuation of wind farm by choosing the appropriate control mode and coordinating multiple wind turbines in consideration of grid conditions. The performance of the proposed scheme is verified via simulation studies in PSCAD/EMTDC with doubly-fed induction generator (DFIG) based wind turbine models.

Power Control of Wind Induction Generator used SVPWM Inverter (SVPWM 인버터를 이용한 풍력발전용 유도발전기 최적전력제어)

  • Choi, Sun-Pill;Kim, Dong-Wan;Kim, Choon-Sam;Lee, Hyun-Woo;Park, Han-Suk;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1303-1305
    • /
    • 2002
  • In this study, We proposed high efficiency wind power generator system for induction generator used SVPWM swiching inverter. First, We suggest Equivalient Circuit for Ind Generator, it's characteristics equation, and equation of slip. In addition, we suggest Pick Traction Slip control methods. adapted variable power system. We study simulation result fo suggested system and output power by slip e and we identify SVPWM of suitable wind p system by comparison between SPWM and SVPW Consequently, we show that the control result variable wind power is suitable.

  • PDF

Power Quality Analysis of Wind Power System Embedded in Distribution Networks (풍력발전시스템의 배전계통 연계운전 시 전의품질 해석)

  • Kim, Eung-Sang;Roh, Pyung-Kweon;Chu, Jin-Bu;Chang, Byung-Tae;Lee, Seung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.229-231
    • /
    • 1999
  • This paper deals with electromagnetic transient modelling of wind power system embedded in distribution networks. Wind power system consists of induction generator link reactor, distribution line, and controlled load unit. The introduction of embedded wind power system presents a new set of conditions to networks both with respect to power quantify needed to be transported and power quality such as sag swell, very short interruption, and flicker. This paper investigates the transient behavior of voltage, frequency, and load flow in wind driven induction generation system embedded in distribution networks.

  • PDF

Analysis of doubly-fed induction generator based wind power system for voltage sag (배전선로 전압강하에 대한 이중 여자 풍력발전시스템 특성 해석)

  • Cha, Han-Ju;Lee, Sang-Hoey
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1234-1235
    • /
    • 2007
  • This paper represents the generating principles of the doubly-fed induction generator (DFIG) based wind power system and developes a simulation model of DFIG by using PSCAD/EMTDC. In addition, this paper analyzes the steady state operation and the transient operation during the voltage sags in the power common coupling. The voltage sags are occurred by three phase line-to-ground faults and full-voltage startup of an induction motor in the simulation.

  • PDF

The MPPT Control Method of the PMSG Wind Generation System using the Turbine Model with a Squirrel Cage Induction Motor (농형 유도기 터빈 모델을 이용해 구현한 영구자석 동기기 풍력발전 시스템의 MPPT 제어)

  • Lee, Joon-Min;Kim, Dong-Hwa;Shin, Hye-Su;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This paper presents the MPPT(Maximum Power Point Tracking)control method of the PMSG wind generation system using the turbine model with a squirrel cage induction motor. The torque of squirrel cage induction turbine model is controlled by mathematization of speed characteristics of real blade. In this paper, maintenance and cost issues into consideration, except for previous method using information of the velocity of the wind speed sensor, the algorithm is presented. The algorithm is controlled by tracking the optimal point, the generator speed and maximum grid power. The vector controls of the generator side converter and the grid side converter are controlled respectively to obtain maximum torque and regulate unity power factor. With Psim simulations and experiments, the efficiency of squirrel cage induction turbine model and the validity of control algorithm are verified.

Study on Doubly Fed Induction Generator in a wind turbine (DFIG 풍력발전시스템에 관한 연구)

  • Han, Sang-Yul;Cha, Sam-Gon;Choi, Won-Ho;Lee, Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.253-256
    • /
    • 2006
  • This paper shows operating characteristics of DFIG(Double Fed Induction Generator) for wind turbine. The back to back PWM voltage-fed inverter connected between the rotor and grid network operated sub and super-synchronous operating mode, and the vector-controlled DFIG enables the decoupling between active and reactive power as well as between torque and power factor. This paper is validated by simulations and experimental results.

  • PDF

Output Power Control of Wind Generation System by Machine Loss Minimization

  • Abo-Khalil Ahmed;Lee Dong-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.51-54
    • /
    • 2005
  • Generator efficiency optimization is important for economic saving and environmental pollution reduction. In general, the machine loss can be reduced by the decreasing the flux level, resulting in the significant reduction of the core loss. This paper proposesan model-based controller is used to decrement the excitation current component on the basis of measured stator current and machine parameters and the q-axis current component controls the generator torque, by which the speed of the induction generator iscontrolled according to the variation of the wind speed in order to produce the maximum output power. The generator reference speed is adjusted according to the optimum tip-speed ratio. The generated power flows into the utility grid through the back-to-back PWM converter. The grid-side converter controls the dc link voltage and the line-side power factor by the q-axis and the d-axis current control, respectively. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Analysis of Dynamic Response of 1.5MW DFIG Wind Power Simulator with Real-grid Connection (실 계통 연계 1.5MW급 DFIG 풍력발전 시뮬레이터의 응동특성 분석)

  • Choy, Young-Do;Jeon, Young-Soo;Jeon, Dong-Hoon;Shin, Jeong-Hoon;Kim, Tae-Kyun;Jeong, Byung-Chang
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.4-12
    • /
    • 2009
  • The effect of change in DFIG (doubly-fed wind power generator) rotating speed and active power on the grid was analyzed to understand the characteristics of wind power using the wind power simulator connected to the grid at Gochang Power Quality Test Center. Electric power quality improvement devices (DVR, STATCOM, SSTS) and electric power quality disturbance application devices for 22.9 kV grid are equipped at Gochang Power Quality Test Center. Induction motor and VVVF inverter were used to emulate the blade of a wind power generator, and a simulator for Cage wound induction generator and DFIG was developed. The trial line were assumed to be 20 km and 40 km in length, and variable wind speed pattern was set using wind speed data from Ducjeokdo to verify the power characteristics of the wind power generator according to rotating speed.

  • PDF

Modeling and Control of a Doubly-Fed Induction Generator (DFIG) Wind Power Generation System for Real-time Simulations

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents a study of a DFIG wind power generation system for real-time simulations. For real-time simulations, the Real-Time Digital Simulator (RTDS) and its user friendly interface simulation software RSCAD are used. A 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. The stator-flux oriented vector control scheme is applied to the stator/rotor side converter control, and the back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for a realistic, reliable and accurate simulation analysis. Block diagrams, a mathematical presentation of the DFIG and a control scheme of the stator/rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.