• Title/Summary/Keyword: Wind Environment

Search Result 1,912, Processing Time 0.191 seconds

Study on Basic Wind Speed Suiteable for Wind Power Development (풍력발전에 적합한 기본풍속 연구)

  • Kim, JungHwan;Jeong, HoSeong;Kim, HyeongJun;Han, JungHun;Park, SunKyu;Choi, JinWoong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.189.1-189.1
    • /
    • 2010
  • The wind farm where the wind velocity condition is excellent and economical can be established to produce power with the multiple wind power turbine. The wind velocity which is suitable to Wind Power Development must be evaluated for searching the economical wind farm on planning the wind farm. In this paper, based on wind speed data at 24 locations in Korea from 1971 through 2009, the basic wind velocity which can be applied to designing wind power development is estimated using the statiscal process. The wind velocity which is measured from observation stations is revised according to wind gauge's height and Circumferential environment. The wind speeds for 200 year's return period in 24 locations are determined using the Gumbel's distribution.

  • PDF

A Study of Atmospheric Field around the Pohang for Dispersion Analysis of Air Pollutants -Numerical Simulation of Wind Field- (대기오염 확산 해석을 위한 포항지역 기상장 연구 -바람장 수치모의-)

  • 이화운;정우식;김현구;이순환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • Sea/land circulation system is a representative mesoscale local circulation system in coastal area. In this study, wind fields around coastal area. Pohang, which is affected by this system was investigated and its detailed characteristic analysis was carried out. The following can be found out from the numerical simulation. Generally, at nighttime mountain winds prevail and land breeze toward the coastal area was well simulated During daytime, valley wind and sea breeze was simulated in detail. Especially, as a result of analyzing the land breeze path, it could be found along the coastline as it flows out through low land coastal area. In order to investigate the accuracy of model results. wind speed, temperature and wind direction of continuous typical sea/land breeze occurrence day was compared with observation data. Analyzing the characteristics of local circulation system was very hard because of horizontally sparse observation data but from the above result, a numerical simulation using RAMS, which satisfies the spatial high resolution, will provide more accurate results.

Numerical Simulation of Advection and Diffusion using the Local Wind Model in Kwangyang Bay, Korea (국지풍모델을 이용한 광양만권의 이류확산 수치모의)

  • ;;Akira Kondo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • A three-dimensional numerical model which involved the nesting method was developed to reproduce the wind circulation of Kwangyang Bay area which comprises complicated mountains and sea topograph. The calculated results indicated geographical effects of Kwangyang Bay area, sea/land breezes and mount-valley wind which are local circular winds. We also noticed that the northern inland area of Kwangyang Bay formed the very complex wind systems under the influence of such geographic effects when a land breeze was not formed. A good agreement was found between predicted and observed values of temperature. In addition, the calculated results of the wind direction and the wind velocity are in accord with the observed values. They showed only a slight difference in between predicted and the observed values, when the sea breeze and the land breeze are changing.

Wind Tunnel Experiments for Studying Atmospheric Dispersion in the Complex Terrain I.Dispersion in a mountainous Area (복잡한 지형내 오염물질의 대기확산 풍동실험: I. 산지지형에서의 확산)

  • 경남호;김영성;손재익
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.169-178
    • /
    • 1992
  • Dispersion of pollutant in a mountainous area is simulated in a wind tunnel. In the northwest side of the terrain model, the sea level is assumed. Wind from the sea initially confronts hills along the shoreline, a line of large buildings next, and finally a valley between high mountains in the south and in the east. In the northwest wind conditions, severe flow separation occurs in the lee side of hills, even beyond the building area. Pollutant from the buildings is trapped in this region and its concentration is the highest. In the west wind conditions, pollutant from the buildings flows along the hills aslant the main wind direction in this case. Since large valley is located in the downstream, pollutant tends to disperse along the valley.

  • PDF

Development of wind tunnel test model of mid-rise base-isolated building

  • Ohkuma, Takeshi;Yasui, Hachinori;Marukawa, Hisao
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2004
  • This paper describes a method for developing a multi-degree-of freedom aero-elasto-plastic model of a base-isolated mid-rise building. The horizontal stiffness of isolators is modeled by several tension springs and the vertical support is performed by air pressure from a compressor. A lead damper and a steel damper are modeled by a U-shaped lead line and an aluminum line. With this model, the frequency ratio of torsional vibration to sway vibration, and plastic displacements of isolation materials can be changed easily when needed. The results of isolation material tests and free vibration tests show that this model provides the object performance. The peak displacement factors are about 4.5 regardless of wind speed in wind tunnel tests, but their gust response factor decreases with increment of wind speed.

Methodology of Climate-Ecological Priority Area Analysis for Air Corridor Planning - In the Case of Pan-Gyo Area - (바람통로 계획을 위한 기후생태적 우선지역 분석 및 설정 방법 - 성남 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.58-73
    • /
    • 2003
  • It is well known that urban environment affects climate, as we can see in the quality of bio-climate. However, climate has not been recognised properly in the urban planning process. The role it flays needs to be examined for better urban environment. The main objective of this study is to investigate the climate-ecological priority area which produces cold fresh air and thermal induced wind circulation between rural and urban areas. The objective is also to improve the quality of bio-climate and wind circulation at blocked urban areas. This paper uses the measurement and analysis method of wind direction and wind speed in order to investigate the climate-ecological priority area and cold fresh air corridor. In this study, local climate conditions i.e. wind speed, wind direction, temperature, humidity etc., were measured at nine fields and analyzed. On the basis of the climate measurement, the climate ecological priority areas were delineated; These will be assigned as climate-ecological conservation areas.

Thermospheric Wind Observation and Simulation during the Nov 4, 2021 Geomagnetic Storm Event

  • Wu, Qian;Lin, Dong;Wang, Wenbin;Ward, William
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Thermospheric wind observations from high to mid latitudes are compared with the newly developed Multiscale Atmosphere Geospace Environment (MAGE) model for the Nov 3-4 geomagnetic storm. The observation and simulation comparison shows a very good agreement and is better at high latitudes in general. We were able to identify a thermospheric poleward wind reduction possibly linked to a northward turning of the Interplanetary Magnetic Field (IMF) at ~22 UT on Nov 3 and an enhancement of the poleward wind to a southward turning near 10 UT on Nov 4 at high latitudes. An IMF southward turning may have led to an enhancement of equatorward winds at Boulder, Colorado near midnight. Simultaneous occurrence of aurora may be associated with an IMF By turning negative. The MAGE model wind simulations are consistent with observations in these cases. The results show the model can be a very useful tool to further study the magnetosphere and ionosphere coupling on short time scales.

A Study of the Development of a Korea Wind Chill Temperature Index (II) - A Preliminary Study of the Development of the Korea Wind Chill Temperature Index - (한국형 체감온도지수 개발연구(II) - 체감온도지수 개발을 위한 예비실험 -)

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Byung-Soo;Yoon, Sook-Hee;Lee, Jong-Tae;Nam, Jae-Cheol;Ryoo, Sang-Boom;Kim, Eun-Byul;Park, Gil-Un;Song, Jeong-Hui
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.891-902
    • /
    • 2007
  • This paper aims to develop a Korea wind chill temperature index using an experimental method. For this, the researchers carried out a preliminary experiment in order to of for provisions necessary for the selection and safety of test participants, accuracy of experiment, and readiness for various situations that may occur during experiment. The researchers also investigated test subjects' safety and experiment conditions in which wind speed changes from calm condition into strong wind speed condition under the constant air temperature of $5^{\circ}C$. The results of this study are as follows. With regard to the variation of facial skin temperature such as forehead, cheek, nose, and chin, the skin temperature of cheek closely appears to depend on the change of air temperature and wind speed, exhibit a stable variation trend of skin temperature, and indicate the lowest temperature than any other facial parts. The skin temperature of women tends to be more sensitive than that of man and the skin temperature of human tends to decrease at weak wind speed under constant air temperature. It was also found that it is not necessary to take the influence of standard wind speed into consideration when a wind chill index is developed.

Numerical study on the characteristics of TKE in coastal area for offshore wind power (해상풍력발전을 위한 연안지역의 난류에너지 특성 수치연구)

  • Yoo, Jung-Woo;Lee, Soon-Hwan;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1551-1562
    • /
    • 2014
  • To clarify the characteristics of TKE (Turbulence Kinetic Energy) variation for offshore wind power development, several numerical experiments using WRF were carried out in three different coastal area of the Korean Peninsula. Buoyancy, mechanical and shear production term of the TKE budget are fundamental elements in the production or dissipation of turbulence. Turbulent kinetic energy of the south coast region was higher than in other sea areas due to the higher sea surface temperature and strong wind speed. In south coast region, strong wind passing through the Korea Strait is caused by channelling effect of the terrain of the Geoje Island. Although wind speed is weak in east coast, because of large difference in wind speed between the upper and lower layer, the development of mechanical turbulence tend to be predominant. Since lower sea surface temperature and smaller wind shear were detected in west coastal region, the possibility of turbulence production not so great in comparison with other regions. The understanding of the characteristics of turbulence in three different coastal region can be reduced the uncertainty of offshore wind construction.

Effects of Spatio-Temporal Resolution of Diagnostic Wind Field on the Dispersion of Released Substance (바람장의 공간적.시간적 해상도가 누출물질 확산에 미치는 영향)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.327-338
    • /
    • 2000
  • complexity in atmospheric environment coupled with shoreline and complex terrain often causes local variations of meteorology that are distinct from those representative over larger surrounding area, These kinds of local variations are less significant in usual long-term environmental impact analyses dealing with continuous plume. The variations could however be crucial in predicting dispersion of toxic substance released in a relatively small area for a short duration. In the present paper the effects of spatial and temporal resolution of diagnostic wind field on the dispersion of the released substance are investigated by using a puff model. A hypothetical release scenario assumes that a substance is released from a location in the Yochon Industrial Estate and passively dispersed within a few-kilometer distance for an hour. The results show that diagnostic analysis could resolve more spatial variations to some extent by employing smaller grid size. The peak concentrations and puff trajectories obtained from spatially -and/or tmeporally -varing diagnostic wind field are found appreciably different from those obtained from uniform wind field. Attention to high-resolution wind field in the both spatial and temporal spaces is called in the consequence analysis of toxic substance release.

  • PDF