• Title/Summary/Keyword: Wind Corridor

Search Result 49, Processing Time 0.028 seconds

Measurement and Analysis of Indoor Environment in Emergency Switching Type Temporary Negative Pressure Isolation Ward that Use Portable Negative Pressure Units (이동형 음압기를 적용한 긴급 전환형 임시음압격리병실의 실내 환경 측정 분석)

  • Lee, Wonseok;Lee, Sejin;Kim, Heegang;Yeo, Myoungsouk
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.89-97
    • /
    • 2022
  • Purpose: Because of the recent COVID-19 pandemic, there have been many cases of using portable negative pressure unit to convert general wards into temporary negative pressure isolation wards. The purpose of this study is to analyze the indoor environment of the switching type wards. Methods: Field measurements and experiments were conducted in a medical facility. Air volume, wind speed and pressure difference were measured in non-occupant state. Dispersion tests were performed with gas and particle matter. Results: The pressure difference between the wards and the corridor was higher than -2.5 Pa in normal situation. However, in the gas and particle dispersion tests, it was found that there were concerns about the spread through leakages in low-airtight walls or ceilings. In addition, it was confirmed that the pressure imbalance in ducts through the non-sealed diffusers could cause back flow during portable unit operation. Furthermore, when there was a pressure difference between adjacent wards planned to be at same pressure level, the possibility of the spread through the leakages was found. Implications: When using portable units for making switching type wards, it is necessary to create airtight space and seal the non-operation diffusers. In case of operating the air handling unit, T.A.B must be performed to adjust the duct balancing.

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Study on Consideration of Artificial Rain Technology in Aspect of National Security (국가안보측면으로서의 인공강우기술 고찰)

  • Choi, Kee-Nam;Lee, Sun-Je
    • Convergence Security Journal
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • March 11, 2010, in Japan located over East Sea of Korea, due to the strong earthquake tsunami, Fukushima Nuclear Power Plant was ceased and exploded resulting in leaking radioactive substances. Even though it was an accident happened in a nation, leaked radioactive substances were spread across the world moving along ocean currents and air current. Our nation also had terror and confusion about radioactive rain after the accident, and even though a year has been passed by after the accident, the problem on the radioactive contamination isn't solved. So to speak, nuclear accident of neighboring country is a threat to our nation but not only Japan but also Chinese ocean across the West Sea has nuclear power plants. Beside threat of nuclear accident of neighboring countries, North Korea in military confrontation is the world 3rd country holding chemical and biological weapons and can spray the biological weapons to South Korea at any time like Yeonpyeong-do bombard provocation in November, 2010. The study is the strategy confronting such threats and grafted artificial rain technology which is weather control technology. Since radioactive substances on radioactive accidents and North Korean biological weapons can differ in the density by the weather condition, only artificial rain technology can remove the threat perfectly but it is worth to try as the method to reduce damage and in the aspect of psychology. To use the artificial rain technology in the aspect of national security to acquire the public safety, research institutes such ADD should fulfill active and symbolic technology research development.

Planting Design Strategies and Green Space Planning to Mitigate Respirable Particulate Matters - Case Studies in Beijing, China - (미세먼지 저감을 위한 식재기법 및 도시 녹지계획 방향 - 중국 베이징시 사례를 중심으로 -)

  • Xu, Xi-ran;Kim, Jin-Oh
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.40-49
    • /
    • 2017
  • The purpose of the research is to analyze the recent cases of green space planning and planting design in Beijing, one of the cities having the worst particulate matters (PM) pollution. This study comprehensively reviewed Chinese academic literature addressing green space planning to reduce PM pollution. In addition, we conducted field observations and interviews with public officials from Beijing Municipal Bureau of Landscape Design in charge of planning and management of green spaces in Beijing. After the extensive review of literature we derived tree planting principles to mitigate the impact of PM from urban road system, residential area, and industrial district. Using the principles we evaluated the three recent cases of planting design to mitigate PM: Beijing Fuxing Road, Fu Run Residential Area and Beijing Beiqi Multipurpose Vehicle Factory. We conclude that green space planning and trees planting are not effective in mitigating negative impact of PM pollution because of inadequate selection of trees and inconsiderate planting composition. We proposed to replace the tree species with the ones capable of reducing the spread of PM, and reorganize planting compositions that consider the directions and characteristics of urban wind flow. This study suggests desirable types of tree species and planting compositions for road, residential and industrial districts, and we expect that it provides helpful guidelines for making planting design and species selection to mitigate the impact of PM in urban landscape.

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.

Analysis of Nocturnal Cold Air Flow Characteristics for Setting of Tropical Night Response Zone in Daegu (대구시 열대야 대응 구역 설정을 위한 야간 찬공기 유동성 분석)

  • SEO, Bo-Yong;LEE, Sang-Beom;GWON, Soon-Beom;CHA, Jae-Gyu;JUNG, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.220-235
    • /
    • 2020
  • Heat wave generation in cities is basically affected by global warming, but it is further exacerbated by the impact of artificial heat emission and heat accumulation in the city. In particular, the effects of urban heat waves directly affect the occurrence of tropical nights. Basically, however, the choice of countermeasures against tropical nights is very limited compared to the daytime heat wave response. The purpose of this study was to analyze the characteristics of cold air flow at night as a countermeasure against tropical nights in Daegu Metropolitan City and to suggest its spatial applicability. As a research method, the spatial characteristics (flow velocity, flow rate, flow direction and range) of cold air flow in Daegu were quantitatively analyzed using KLAM_21, a cold air flow analysis program. As a result of the analysis, it was found that cold air generation and flow in the surrounding mountains of Daegu Metropolitan City was very active, but the inflow was limited to the urban area, which has tropical nights. However, it has been shown that the flow of cold air flowing from the surrounding mountains is very active in some urban areas, so it has spatial conditions that are very effective in countering tropical nights. If these spatial conditions are used for the urban planning, it will be very useful to develop countermeasures for tropical nights.

Complaint-based Data Demands for Advancement of Environmental Impact Assessment (환경영향평가 고도화를 위한 평가항목별 민원기반 데이터 수요 도출 연구)

  • Choi, Yu-Young;Cho, Hyo-Jin;Hwang, Jin-Hoo;Kim, Yoon-Ji;Lim, No-Ol;Lee, Ji-Yeon;Lee, Jun-Hee;Sung, Min-Jun;Jeon, Seong-Woo;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.49-65
    • /
    • 2021
  • Although the Environmental Impact Assessment (EIA) is continuously being advanced, the number of environmental disputes regarding it is still on the rise. In order to supplement this, it is necessary to analyze the accumulated complaint cases. In this study, through the analysis of complaint cases, it is possible to identify matters that need to be improved in the existing EIA stages as well as various damages and conflicts that were not previously considered or predicted. In the process, we dervied 'complaint-based data demands' that should be additionally examined to improve the EIA. To this end, a total of 348 news articles were collected by searching with combinations of 'environmental impact assessment' and a keyword for each of the six assessment groups. As a result of analysis of collected data, a total of 54 complaint-based data demands were suggested. Among those were 15 items including 'impact of changes in seawater flow on water quality' in the category of water environment; 13 items including 'area of green buffer zone' in atmospheric environment; 10 items including 'impact of soundproof wall on wind corridor' in living environment; 8 items including 'expected number of users' in socioeconomic environment, 4 items including 'feasibility assessment of development site in terms of environmental and ecological aspects' in natural ecological environment; and 4 items including 'prediction of sediment runoff and damaged areas according to the increase in intensity and frequency of torrential rain' in land environment. In future research, more systematic complaint collection and analysis as well as specific provision methods regarding stages, subjects, and forms of use should be sought to apply the derived data demands in the actual EIA process. It is expected that this study can serve to advance the prediction and assessment of EIA in the future and to minimize environmental impact as well as social conflict in advance.

An Analysis of the Effect of Reducing Temperature and Fine Dust in the Roadside Tree Planting Scenario (가로수 식재 시나리오에 따른 기온 및 미세먼지 저감 효과 분석)

  • Jeong-Hee EUM;Jin-Kyu MIN;Ju-Hyun PARK;Jeong-Min SON;Hong-Duck SOU;Jeong-Hak OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.68-81
    • /
    • 2023
  • This study aims to establish a scenario based on the spacing and arrangement of the roadside trees to reduce heat waves and fine dust in cities that occurred during the urbanization process and to quantitatively analyze the degree of reduction. The ENVI-met 5.0.2v model, a micro-climate simulation program, was used to analyze the degree of improvement in the thermal environment and fine dust according to the roadside tree scenario. As a result of temperature analysis according to street tree spacing, the narrower the distance between roadside trees, the lower the temperature during the day as the number of planted trees increased, and a similar pattern was shown regardless of the distance between roadside trees in the morning and evening. In the case of fine dust emitted from the road, the concentration of fine dust increased slightly due to the increase in roadside trees, but the concentration of sidewalks where people walk increased slightly or there was no difference because of blocking fine dust on trees. The temperature according to the arrangement of street trees tended to decrease as the number of planted trees increased as the arrangement increased. However, not only the amount of trees but also the crown projected area was judged to have a significant impact on the temperature reduction because the temperature reduction was greater in the scenario of planting the same amount of trees and widening the interval of arrangement. In terms of the arrangement, the fine dust concentration showed a difference from the results according to the interval, suggesting that the fine dust concentration may change depending on the relationship between the main wind direction and the tree planting direction. By quantitatively analyzing the degree of thermal environment and fine dust improvement caused by roadside trees, this study is expected to promote policies and projects to improve the roadside environment efficiently, such as a basic plan for roadside trees and a project for wind corridor forests.