DOI QR코드

DOI QR Code

Analysis of Nocturnal Cold Air Flow Characteristics for Setting of Tropical Night Response Zone in Daegu

대구시 열대야 대응 구역 설정을 위한 야간 찬공기 유동성 분석

  • 서보용 (계명대학교 환경과학과) ;
  • 이상범 ((주)도시환경연구소 라움) ;
  • 권순범 (계명대학교 환경과학과) ;
  • 차재규 (국립생태원 생태평가연구실) ;
  • 정응호 (계명대학교 지구환경학과)
  • Received : 2020.08.10
  • Accepted : 2020.09.09
  • Published : 2020.09.30

Abstract

Heat wave generation in cities is basically affected by global warming, but it is further exacerbated by the impact of artificial heat emission and heat accumulation in the city. In particular, the effects of urban heat waves directly affect the occurrence of tropical nights. Basically, however, the choice of countermeasures against tropical nights is very limited compared to the daytime heat wave response. The purpose of this study was to analyze the characteristics of cold air flow at night as a countermeasure against tropical nights in Daegu Metropolitan City and to suggest its spatial applicability. As a research method, the spatial characteristics (flow velocity, flow rate, flow direction and range) of cold air flow in Daegu were quantitatively analyzed using KLAM_21, a cold air flow analysis program. As a result of the analysis, it was found that cold air generation and flow in the surrounding mountains of Daegu Metropolitan City was very active, but the inflow was limited to the urban area, which has tropical nights. However, it has been shown that the flow of cold air flowing from the surrounding mountains is very active in some urban areas, so it has spatial conditions that are very effective in countering tropical nights. If these spatial conditions are used for the urban planning, it will be very useful to develop countermeasures for tropical nights.

도시에서의 폭염발생은 기본적으로 지구온난화에 영향을 받으나, 도시에서 발생하는 인공열 배출과 열축적이 큰 토지피복의 영향으로 더욱 가중된다. 특히 도시폭염의 영향은 야간 열대야 발생에도 직접적 영향을 준다. 그러나 기본적으로 주간의 폭염대응에 비해 열대야 대응수단 선택은 매우 제한적이다. 본 연구에서는 대구시를 대상으로 열대야 대응 방안으로 야간 찬공기 유동 특성을 분석하고 이의 공간적 활용가능성을 제시하고자 하였다. 연구방법은 찬공기 유동 분석 프로그램인 KLAM_21을 활용하여 대구시의 찬공기 유동의 공간적 특성인 찬공기 높이 및 유동범위와 유속 및 유동방향을 정량적으로 분석하였다. 분석결과 대구시 주변산지에서의 찬공기 생성, 유동은 매우 활발하나 열대야 발생지역인 도심지역으로 유입이 제한적인 것으로 나타났다. 그러나 일부 시가지에서는 주변산지로부터 유입되는 찬공기 유동성이 매우 활발하여 열대야 대응에 매우 효과적인 공간적 조건을 가지고 있는 것으로 나타났다. 이러한 공간적 조건을 도시계획적 차원에서 활용하면 열대야 대응방안 개발에 매우 유용할 것으로 판단된다.

Keywords

References

  1. Cha, J.G., E.H. Jung, J.W. Ryu and D.W. Kim. 2007, Constructing a green network and wind corridor to alleviate the urban heat-island. Journal of the Korean Association of Geographic information studies 10(1):102-112.
  2. Cha, J.G., T.Y. Choi, D.I. Kang and E.H. Jung. 2019, Analysis of the cold air flow in suwon for the application of urban wind corridor. Journal of the Korean Association of Geographic information studies 22(4):24-38.
  3. Choi, B.C., J.Y. Kim, D.G. Lee and K. Jan. 2007, Long-term trends of daily maximum and minimum temperatures for the major cities of South Korea and their implications on human health. Atmosphere 17(2):171-183.
  4. Choi, G.Y, J.N. Choi and H.J. Kwon. 2005. The impact of high apparent temperature on the increase of summertime disease -related mortality in Seoul: 1991-2000. Journal of Preventive Medicine and Public Health 38(3):285-290.
  5. Choi, G.Y. and W.T. Kwon. 2005. Spatialtemporal patterns and recent changes of tropical night phenomenon in South Korea. Journal of the Korea Geographical Society 40(6):730-747.
  6. Eagleman, J.R. 1974. A comparison of urban climate modification in three cities. Atmospheric Environment 8:1132-1142.
  7. Grunwald, L., M. Kossmann and S. Weber. 2019. Mapping urban cold-air paths in a Central European city using numerical modelling and geospatial analysis. Urban Climate 29:1-17.
  8. Heo, I.H. and W.T. Kwon. 2007. Temperature change of recent 10 years(1996-2005) in Korea. Journal of Climate Research. 2(2):79-93.
  9. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, pp.151.
  10. IPCC. 2018. Global warming of $1.5^{\circ}C$. IPCC, Geneva, Switzerland 118-126.
  11. Je, M.H and S.H. Jung. 2018. Urban Heat Island Intensity Analysis by Landuse Types. The Korea Contents Association. 18(11): 9.
  12. Jung, E.H. 2007. Wind corridor region setting and assessment for the improvement of air quality in deagu. Daegu environment technology development center. 07-2-80-81:1-85.
  13. Jung, E.H. 2015. A study on the theory and cases of introducing urban planning for sustainable urban planning. Munundang, Seoul. p.32-39, p.64.
  14. Jung, E.H., H.D. Kim, B.H. Rho, H.Y. Kim, J.H. Eum, J.W. Ryu, S.B. Lee and B.Y. Seo. 2019. Gyeongsangbuk-do Heatwave Climate Change Response and Overcome Measures. Gyeongsangbuk-do pp.57.
  15. Kiese, O. 1988. Die Bedeutung verschiedenartiger Freiflachen fur die Kaltluftproduktion und die Frischluftversorgung von Stadten, Landschaft und Stadt 20 pp.67-71.
  16. Kim, D.W., J.W. Ryu, J.G. Cha and E.H. Jung. 2013. Korea’s urban regeneration project on the improvement of urban micro climate: a focal study on the case og Changwon City. Global Journals of Human Social Sciences Research 13(1-B):27-38.
  17. Kim, H.D. and H.Y. Kim. 2011. Mizukoshi. T; Yamashita. S; Author. Environmental climatology. Keimyung University Press. Daegu p.200.
  18. Korea Research Institute for Human Settlements. 2016. A Study on the Urban Area Microclimate Management Direction pp.24, pp.71-74.
  19. Korea Meteorological Administration. 2012. Climate change forecast report on the Korean Peninsula. 11-1360000-000861-01 pp.6-15.
  20. Korea Meteorological Administration. 2020. Average number of tropical nights. https://data.kmu.go.kr. (Accessed June 10, 2020).
  21. Lee, W.S., S.G. Jung, K.H. Park and K.T. Kim. 2010. Analysis of Urban Thermal Environment for Environment-Friendly Spatial Plan. Journal of the Korean Association of Geographic information studies 13(1):142-154. https://doi.org/10.11108/kagis.2010.13.1.142
  22. Landsberg, H.E. 1981. The urban climate. Int. Geophsics Series. Academic Press, New York, Vol28 pp.1-275.
  23. National Institute of Meteorological Research. 2011. Prospects and impacts of new climate change scenarios. http://www.kma.go.kr/notify/press/kma_list.jsp?mode=view&num=1192151. (Accessed November 29, 2011).
  24. Sachsen T., G. Ketzler, A. Knorchen and C. Schneider. 2013. Past and future evolution of nighttime urban cooling by suburban cold air drainage in Aachen, DIE ERDE 144(3-4):274-289.
  25. Seo, B.Y. 2014. Comparison and Analysis of wind path formation depending on urban spacial Characteristics. Master Thesis, Keimyung University pp.1-2, pp.19, pp59-61.
  26. Seo, B.Y. and E.H. Jung. 2017, Comparative analysis of wind flows in wind corridor based on spatial and geomorphological characteristics to improve urban thermal environments. Journal of the Korean Association of Geographic information studies 20(2):75-88. https://doi.org/10.11108/kagis.2017.20.2.075
  27. Sievers, U. 2007, Das Kaltluftabflussmodell KLAM_21. Deutscher Wetterdienst 227:37.
  28. Sievers, U. and Kossmann, M., 2016, The cold air drainage model KLAM_21 - Model formulation and comparison with observations. Weather and Climate 36:2 -24. https://doi.org/10.2307/26779385
  29. Song, B.G. and K.H. Park. 2012. Analysis of heat island characteristics considering urban space at nighttime. Journal of the Korean Association of Geographic information studies 15(1):133-143. https://doi.org/10.11108/kagis.2012.15.1.133
  30. Wang, H., Y. Zhang, J.Y. Tsou and Y. Li. 2017. Surface urban heat island analysis of Shanghai (China) based on the change of land use and land cover. Sustainability 9(9):1-22.
  31. Weber, S. and W. Kuttler. 2004. Cold-air ventilation and the nocturnal boundary layer structure above an urban ballast facet. Meteorol. Z 13(5):405-412. https://doi.org/10.1127/0941-2948/2004/0013-0405