• Title/Summary/Keyword: Wilt

Search Result 661, Processing Time 0.031 seconds

Studies on the Inheritance of Resistance to Bacterial Wilt(Ralstonia solanacearum) in Tobacco(Nicotiana tabacum L.) (연초의 세균성마름병 저항성 유전에 관한 연구)

  • 정석훈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • Bacterial wilt(Ralstonia solanacearum) is one of the major diseases of flue-cured tobacco (Nicotiana tabacum L.) in the world. This study was conducted to investigate degree of dominance, selection, and correlation between leaf shape and degree of bacterial wilt resistance in flue-cured tobacco. The degree of disease caused by bacterial wilt was evaluated in parents, F$_1$, F$_2$ and F$_3$ populations of two crosses, BY 4 x NC 95 and BY 4 x Coker 86, in the infected field. The leaf shape index was also measured in parents and F$_2$ population of BY 4 x NC 95. The incidence of bacterial wilt was observed in the middle of June and peaked in late July, when the highest value of pathogen density reached 1.0 x 10$^{6}$ colony forming unit per gram. It was concluded that the inheritance mode of risestance to bacterial wilt in the above two crosses of susceptible and resistant varieties was recessive and polygenic. The resistance to bacterial wilt was significantly correlated with leaf shape in F2 generation of BY 4 x NC 95. But certain plants having narrower leaves were also resistant to bacterial wilt. It is considered that the bacterial wilt resistant lines having narrower leaves could be selected. The selection for bacterial wilt resistance in the F$_2$ population might be effective.

  • PDF

Biological Control of Soilborne Diseases on Tomato, Potato and Black Pepper by Selected PGPR in the Greenhouse and Field in Vietnam

  • Thanh, D.T.;Tarn, L.T.T.;Hanh, N.T.;Tuyen, N.H.;Srinivasan, Bharathkumar;Lee, Sang-Yeob;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.263-269
    • /
    • 2009
  • Bacterial wilt, Fusarium wilt and Foot rot caused by Ralstonia solanacearum, Fusarium oxysporum, and Phytophthora capsici respectively, continue to be severe problems to tomato, potato and black pepper growers in Vietnam. Three bio-products, Bacillus vallismortis EXTN-1 (EXTN-1), Bacillus sp. and Paenibacillus sp. (ESSC) and Bacillus substilis (MFMF) were examined in greenhouse bioassay for the ability to reduce bacterial wilt, fusarium wilt and foot rot disease severity. While these bio-products significantly reduced disease severities, EXTN-1 was the most effective, providing a mean level of disease reduction 80.0 to 90.0% against bacterial wilt, fusarium wilt and foot rot diseases under greenhouse conditions. ESSC and MFMF also significantly reduced fusarium wilt, bacterial wilt and foot rot severity under greenhouse conditions. Bio-product, EXTN-1 with the greatest efficacy under greenhouse condition was tested for the ability to reduce bacterial wilt, fusarium wilt and foot rot under field condition at Song Phuong and Thuong Tin locations in Ha Tay province, Vietnam. Under field condition, EXTN-1 provided a mean level of disease reduction more than 45.0% against all three diseases compared to water treated control. Besides, EXTN-1 treatment increased the yield in tomato fruits 17.3% than water treated control plants.

Establishment of the Chickpea Wilt Pathogen Fusarium oxysporum f. sp. ciceris in the Soil through Seed Transmission

  • Pande S.;Rao, J. Narayana;Sharma M.
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.3-6
    • /
    • 2007
  • Chickpea wilt caused by Fusarium oxysporum f. sp. ciceris(FOC) is the most destructive disease in India. It is seed-borne as well as soil-borne pathogen. The role of seed-borne FOC in introducing and establishing wilt in FOC free soils is unknown. Using seeds of FOC infected chickpea cultivar K 850, we provided an evidence of establishing wilt disease in the FOC free soils within three crop cycles or seasons. In the first cycle, typical wilt symptoms were observed in 24 pots in 41 days after sowing. These 24 pots were used for second and third cycles without changing the soil. These 24 pots were sown with seeds collected from healthy plants of a susceptible cultivar JG 62, one seed per pot and development of wilt symptom was recorded. Wilt symptoms appeared in all the pots 26 days after sowing in second cycle and in 16 days after sowing in third cycle. On selective medium, all of the wilted plants yielded FOC in all the three cycles indicating that the mortality was due to wilt. FOC propagules on selective medium were 172, 1197, and 2280 $g^{-1}$ soil at the end of the first, second, and third cycles, respectively. These studies indicated that Fusarium wilt of chickpea is seed-borne and seeds harvested from wilted plants when mixed with healthy seeds can carry the wilt fungus to new areas and can establish the disease in the soil to economic threshold levels within three seasons.

Cultural and Rainfall Factors Involved in Disease Development of Fusarium Wilt of Sweet Potato

  • Lee, Yong-Hwan;Cha, Kwang-Hong;Lee, Doo-Goo;Shim, Hyeong-Kwon;Ko, Sug-Ju;Park, In-Jin;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.92-96
    • /
    • 2004
  • Environmental factors such as soil moisture, land management, and weather conditions affecting Fusarium wilt of sweet potato were investigated in major sweet potato cultivation regions in Korea. Fusarium wilt occurred mainly in reclaimed terracing lands, which are flattened and located in hilly to mountainous areas at the base of the mountain, in early seasonal cultivation regions. Disease severity was lower in reclaimed fields with natural slope. The development of Fusarium wilt in the fields was highly correlated with precipitation during planting period (r=-0.96**). Fusarium wilt was more severe in fields with less than 20 cm of available soil depth than in fields with over 20 cm of available soil depth. Greenhouse studies were consistent with field studies that less soil moisture content caused severe Fusarium wilt of sweet potato. These results indicate that low rainfall and moisture of soil with low effective soil depth during planting period are important environmental factors influencing the development of Fusarium wilt.

Suppression of Bacterial Wilt with Fuorescent Pseudomonads, TS3-7 strain (Fluorescent siderophore 생산균주, TS3-7에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.296-300
    • /
    • 2005
  • Among the root colonizing and plant growth promoting bacteria isolated from the bacterial wilt suppressive soil, five strains were detected to produce siderophores by CAS agar assay. The most effective isolate, TS3-7 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 80% reduction of bacterial wilt disease compared with the control. Significant disease suppression by TS3-7 strain was related to the production of siderophore. Besides iron competition, induction of resistance of the host plant with siderophore was suggested to be another mode of action that suppress bacterial wilt, based on the lack of direct antibiosis against pathogen in vitro. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, TS3-7 stain was identified as Pseudomonas sp. TS3-7.

Carbon and nitrogen status in litterfall of a red pine stand with varying degrees of damage from pine wilt disease

  • Kim, Choon-Sig;Jeong, Jae-Yeob;Cho, Hyun-Seo;Lee, Kwang-Soo;Park, Nam-Chang
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.215-222
    • /
    • 2011
  • We evaluated the carbon (C) and nitrogen (N) status of litterfall in a natural red pine (Pinus densiflora) stand damaged by pine wilt disease in Jinju City, which was one of the areas severely affected by the disease in Korea. A significant correlation (P < 0.05) was found between tree density and basal area and the C and N status of litterfall components, but C and N status was not correlated with mean diameter at breast height in the pine wilt disease stands. Needle-litter C and N concentrations were linearly related (P < 0.05) to basal area in pine wilt disease stands. Needle-litter C concentration decreased with a decrease in damage intensity due to pine wilt disease, whereas litter N concentration increased with an increase of basal area in pine wilt disease stands. The linear regression equations developed for litterfall C and N inputs were significant (P < 0.05), with basal area accounting for 50-86% of the variation, except for cone and flower litter. The results indicated that the incidence of pine wilt disease could impact the quality and quantity of C and N in litterfall of pine stands suffering from pine wilt disease.

Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato

  • Bae, Ju Young;Wu, Jing;Lee, Hyoung Ju;Jo, Eun Jeong;Murugaiyan, Senthilkumar;Chung, Eunsook;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1613-1620
    • /
    • 2012
  • Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of many economically important crops. Since there is no promising control strategy for bacterial wilt, phage therapy could be adopted using virulent phages. We used phage PE204 as a model lytic bacteriophage to investigate its biocontrol potential for bacterial wilt on tomato plants. The phage PE204 has a short-tailed icosahedral structure and double-stranded DNA genome similar to that of the members of Podoviridae. PE204 is stable under a wide range of temperature and pH, and is also stable in the presence of the surfactant Silwet L-77. An artificial soil microcosm (ASM) to study phage stability in soil was adopted to investigate phage viability under a controlled system. Whereas phage showed less stability under elevated temperature in the ASM, the presence of host bacteria helped to maintain a stable phage population. Simultaneous treatment of phage PE204 at $10^8$ PFU/ml with R. solanacearum on tomato rhizosphere completely inhibited bacterial wilt occurrence, and amendment of Silwet L-77 at 0.1% to the phage suspension did not impair the disease control activity of PE204. The biocontrol activities of phage PE204 application onto tomato rhizosphere before or after R. solanacearum inoculation were also investigated. Whereas pretreatment with the phage was not effective in the control of bacterial wilt, post-treatment of PE204 delayed bacterial wilt development. Our results suggested that appropriate application of lytic phages to the plant root system with a surfactant such as Silwet L-77 could be used to control the bacterial wilt of crops.

Plant-derived Antibacterial Metabolites Suppressing Tomato Bacterial Wilt Caused by Ralstonia solanacearum

  • Vu, Thuy Thu;Choi, Gyung Ja;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • Ralstonia solanacearum species complex (RSSC) causes bacterial wilt, and it is one of the most important soil-borne plant pathogenic bacteria. RSSC has a large host range of more than 50 botanical families, which represent more than 200 plant species, including tomato. It is difficult to control bacterial wilt due to following reasons: the bacterial wilt pathogen can grow inside the plant tissue, and it can also survive in soil for a long period; moreover, it has a wide host range and biological diversity. In most previous studies, scientists have focused on developing biological control agents, such as antagonistic microorganisms and botanical materials. However, biocontrol attempts are not successful. Plant-derived metabolites and extracts have been promising candidates to environmentally friendly control bacterial wilt diseases. Therefore, we review the plant extracts, essential oils, and secondary metabolites that show potent in vivo antibacterial activities (in potted plants or in field) against tomato bacterial wilt, which is caused by RSSC.

Phosphorus and Base Cation Inputs through Litterfall Components in Pine Forests after Tree Removal Due to Pine Wilt Disease Disturbance

  • Baek, Gyeongwon;Kim, Seongjun;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to measure litterfall and nutrient (P, K, Ca, Mg) inputs under varying degrees of disturbance by pine wilt disease in pine forests in southern Korea. Litterfall was collected to evaluate nutrient responses at different intensities of disturbance (various levels of basal area) by pine wilt disease across 2 years. Phosphorus, Ca, and Mg concentrations in needle litterfall were positively correlated (p < 0.05) with decreased disturbance intensities (increased basal area) depending on the time of sampling, whereas the nutrient concentrations in other litterfall components (branches, bark, reproductive organs, and miscellaneous litterfall) were not significantly correlated (p > 0.05) with the intensity of pine wilt disease disturbance. Dry weight and nutrient inputs through litterfall components decreased linearly with increasing intensity of disturbance by pine wilt disease (p < 0.05), except for the nutrient inputs of branch (K, Ca, Mg) and reproductive organ (K, Ca) litterfall. These results indicate that decreased litterfall across different levels of disturbance may be related to the reduced soil nutrients in pine wilt disease forests.

Reduced Tomato Bacterial Wilt by Ferrous Chloride Application

  • Hyeon Ji Kim;Su Min Kim;Yeon Hwa Kim;Jeong Hoon Park;Dong Ki Kang;Jae Gill Yun;Ryoung Shin;Jeum Kyu Hong
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.82-87
    • /
    • 2023
  • Exogenous ferrous chloride (FeCl2) suppressed in vitro growth of Ralstonia pseudosolanacearum, causing bacteria for tomato bacterial wilt. More than 50 μM of FeCl2 reduced the in vitro bacterial growth in dosedependent manners. Two to 200 μM of FeCl2 did not affect the fresh weight of detached tomato leaves at 3 and 5 days after the petiole dipping without the bacterial inoculation. The bacterial wilt of the detached tomato leaves was evaluated by inoculating two different inoculum densities of R. pseudosolanacearum (105 and 107 cfu/ml) in the presence of FeCl2. Bacterial wilt in the detached leaves by 105 cfu/ml was efficiently attenuated by 10-200 μM of FeCl2 at 3 and 5 days post-inoculation (dpi), but bacterial wilt by 107 cfu/ml was only reduced by 200 μM of FeCl2 at 3 and 5 dpi. These results suggest that iron nutrients can be included in the integrated disease management of tomato bacterial wilt.