Browse > Article
http://dx.doi.org/10.4014/jmb.1208.08072

Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato  

Bae, Ju Young (Department of Medical Bioscience, Dong-A University)
Wu, Jing (Department of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University)
Lee, Hyoung Ju (Department of Applied Biology, Dong-A University)
Jo, Eun Jeong (Department of Medical Bioscience, Dong-A University)
Murugaiyan, Senthilkumar (Department of Agricultural Microbiology, Tamil Nadu Agricultural University)
Chung, Eunsook (Department of Medical Bioscience, Dong-A University)
Lee, Seon-Woo (Department of Medical Bioscience, Dong-A University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1613-1620 More about this Journal
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of many economically important crops. Since there is no promising control strategy for bacterial wilt, phage therapy could be adopted using virulent phages. We used phage PE204 as a model lytic bacteriophage to investigate its biocontrol potential for bacterial wilt on tomato plants. The phage PE204 has a short-tailed icosahedral structure and double-stranded DNA genome similar to that of the members of Podoviridae. PE204 is stable under a wide range of temperature and pH, and is also stable in the presence of the surfactant Silwet L-77. An artificial soil microcosm (ASM) to study phage stability in soil was adopted to investigate phage viability under a controlled system. Whereas phage showed less stability under elevated temperature in the ASM, the presence of host bacteria helped to maintain a stable phage population. Simultaneous treatment of phage PE204 at $10^8$ PFU/ml with R. solanacearum on tomato rhizosphere completely inhibited bacterial wilt occurrence, and amendment of Silwet L-77 at 0.1% to the phage suspension did not impair the disease control activity of PE204. The biocontrol activities of phage PE204 application onto tomato rhizosphere before or after R. solanacearum inoculation were also investigated. Whereas pretreatment with the phage was not effective in the control of bacterial wilt, post-treatment of PE204 delayed bacterial wilt development. Our results suggested that appropriate application of lytic phages to the plant root system with a surfactant such as Silwet L-77 could be used to control the bacterial wilt of crops.
Keywords
Bacterial wilt; bacteriophage; biocontrol; Ralstonia solanacearum;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Murugaiyan, S., J. Y. Bae, J. Wu, S. D. Lee, H. Y. Um, H. K. Choi, et al. 2010. Characterization of filamentous bacteriophage PE226 infecting Ralstonia solanacearum strain. J. Appl. Microbiol. 110: 296-303.
2 Park, E. J., S. D. Lee, E. J. Chung, M. H. Lee, H. Y. Um, S. Murugaiyan, et al. 2007. MicroTom - A model plant system to study bacterial wilt by Ralstonia solanacearum. Plant Pathol. J. 23: 239-244.   DOI   ScienceOn
3 Roberts, P. D., T. P. Denny, and M. A. Schell. 1988. Cloning of the egl genes of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170: 1445-1451
4 Rohwer, F. 2003. Global phage diversity. Cell 113: 141.   DOI   ScienceOn
5 Romeo, A. M., L. Christen, E. G. Niles, and D. J. Kosman. 2001. Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: Ribonucleotide reductase maturation as a probe of intracellular iron pools. J. Biol. Chem. 276: 24301-24308.   DOI   ScienceOn
6 Saddler, G. C. 2005. Management of bacterial wilt disease, pp. 121-132. In C. Allen, P. Prior, and A. C. Hayward (eds.). Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. APS Press, St. Paul.
7 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York.
8 Shin, J.-W. and S.-C. Yun. 2010. Elevated CO2 and temperature effects on the incidence of four major chili pepper diseases. Plant Pathol. J. 26: 178-184.   DOI   ScienceOn
9 Svensson, U. and A. Christiansson. 1991. Methods for phage monitoring. FIL-IDF Bull. 263: 29-39.
10 Tanaka, H., H. Negishi, and H. Maeda. 1990. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum strain M4S and its bacteriophages. Ann. Phytopathol. Soc. Jpn. 56: 243-246.   DOI
11 Toyoda, H., K. Kakutani, S. Ikeda, S. Goto, H. Tanaka, and S. Ouchi. 1991. Characterization of deoxyribonucleic acid of virulent bacteriophage and its infectivity to host bacteria, Pseudomonas solanacearum. J. Phytopathol. 131: 11-21.   DOI
12 Um, H. Y., E. Chung, J. H. Lee, and S. W. Lee. 2011. Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. J. Microbiol. 49: 305-308.   DOI
13 Van Elsas, J. D., P. Kastelein, P. M. de Vries, and L. S. van Overbeek. 2001. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can. J. Microbiol. 47: 842-854.
14 Yamada, T., T. Kawasaki, S. Nagata, A. Fujiwara, S. Usami, and M. Fujie. 2007. New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153: 2630-2639.   DOI   ScienceOn
15 Fujiwara, A., M. Fujisawa, R. Hamasaki, T. Kawasaki, M. Fujie, and T. Yamada. 2011. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microbiol. 77: 4155-4162.   DOI   ScienceOn
16 Gottwald, T. R., J. H. Graham, and T. D. Riley. 1997. The influence of spray adjuvants on exacerbation of citrus bacterial spot. Plant Dis. 81: 1305-1310.   DOI   ScienceOn
17 Grey, B. and T. R. Steck. 2001. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl. Environ. Microbiol. 67: 3866-3872.   DOI   ScienceOn
18 Hayward, A. C. 2000. Ralstonia solanacearum, pp. 32-42. In J. Lederberg (ed.). Encyclopedia of Microbiology, Vol 4. Academic Press, San Diego.
19 Gu, G., J. Hu, J. M. Cevallos-Cevallos, S. M. Richardson, J. A. Bartz, and A. H. van Bruggen. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS ONE 6: e27340.   DOI
20 Hayward, A. C. 1964. Characteristics of Pseudmonas solanacearum. J. Appl. Bacteriol. 27: 265-277.   DOI
21 Hayward, A. C., H. M. El-Nashaar, U. Nydegger, and L. De Lindo. 1990. Variation in nitrate metabolism in biovars of Pseudomonas solanacearum. J. Appl. Bacteriol. 69: 269-280.   DOI
22 He, L. Y., L. Sequiera, and A. Kelman. 1983. Characteristics of strains of Pseudomonas solacearum from China. Plant Dis. 67: 1357-1361.   DOI
23 Iriarte, F. B., B. Balogh, M. T. Momol, L. M. Smith, M. Wilson, and J. B. Jones. 2007. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol. 73: 1704-1711.   DOI   ScienceOn
24 Jeong, Y., J. Kim, Y. Kang, S. Lee, and I. Hwang. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91: 1277-1287.   DOI   ScienceOn
25 Kawasaki, T., S. Nagata, A. Fujiwara, H. Satsuma, M. Fujie, S. Usami, and T. Yamada. 2007. Genomic characterization of the filamentous integrative bacgeriophage ${\Phi}RSS1$ and ${\Phi}RSM1$, which infect Ralstonia solanacearum. J. Bacteriol. 189: 5792-5802.   DOI   ScienceOn
26 Kawasaki, T., M. Shimizu, H. Satsuma, A. Fujiwara, M. Fujie, S. Usami, and T. Yamada. 2009. Genomic characterization of Ralstonia solanacearum phage ${\Phi}RSB1$, a T7-like wide-hostrange phage. J. Bacteriol. 191: 422-427.   DOI   ScienceOn
27 Kropinski, A. M. 2006. Phage therapy. Everything old is new again. Can. J. Infect Dis. Med. Microbiol. 17: 297-306.
28 Keane, P. J., A. Kerr, and P. B. New. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23: 585-595.
29 Kelman, A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44: 693-695.
30 Kelman, A. 1956. Survival of Pseudomonas solanacearum in water. Phytopathology 46: 16-17.
31 Askora, A., T. Kawasaki, S. Usami, M. Fujie, and T. Yamada. 2009. Host recognition and integration of filamentous phage ${\Phi}RSM$ in the phytopathogen, Ralstonia solanacearum. Virology 384: 69-76.   DOI   ScienceOn
32 Balogh, B., J. B. Jones, F. B. Iriarte, and M. T. Momol. 2010. Phage therapy for plant disease control. Curr. Pharm. Biotechnol. 11: 48-57.   DOI   ScienceOn
33 Capra, M. L., A. Quiberoni, and J. A. Reinheimer. 2004. Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett. Appl. Microbiol. 38: 499-504.   DOI   ScienceOn
34 Cating, R. A., M. A. Hoy, and A. J. Palmateer. 2010. Silwet L-77 Improves the efficacy of horticultral oils for control of boisduval scale Diaspis boisduvalii (Hemiptera: Diaspididae) and the flat mite Tenuipalpus pacificus (Arachnida: Acari: Tenuipalpidae) on orchids. Fla. Entomol. 93: 100-106.   DOI   ScienceOn
35 Chattopadhyay, D., S. Chattopadhyay, W. G. Lyon, and J. T. Wilson. 2002. Effects of surfactants on the survival and sorption of viruses. Environ. Sci. Technol. 36: 4017-4024.   DOI   ScienceOn
36 Fujiwara, A., T. Kawasaki, S. Usami, M. Fujie, and T. Yamada. 2008. Genomic characterization of Ralstonia solanacearum phage RSA1 and its related prophage (RSX) in strain GMI1000. J. Bacteriol. 190: 143-156.   DOI   ScienceOn
37 Ellis, R. J. 2004. Artificial soil microcosm: A tool for studying microbial autecology under controlled conditions. J. Microbiol. Methods. 56: 287-290.   DOI   ScienceOn
38 Fegan, M. and P. Prior. 2005. How complex is the Ralstonia solanacearum species complex?, pp. 449-462. In C. Allen, P. Prior, and A. C. Hayward (eds.). Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. APS Press, St. Paul.